Neutrinos and gamma rays, a partnership to explore the extreme universe

IceCube’s collaborative efforts with gamma-ray, X-ray, and optical telescopes started long ago. Now, the IceCube, MAGIC and VERITAS collaborations present updates to their follow-up programs that will allow the gamma-ray community to collect data from specific sources during periods when IceCube detects a higher number of neutrinos. Details of the very high energy gamma-ray follow-up program have been submitted to the Journal of Instrumentation. […]

Read More »


Searching for point-like sources with seven years of IceCube data

The IceCube Collaboration has just announced the results of a search for point-like sources using track-like neutrino candidates detected by IceCube over seven years, from 2008 to 2015. No source has been identified, but the sensitivity keeps improving at a fast pace and will allow IceCube to test accurate models that suggest that sources could soon be observed. These results have just been submitted to The Astrophysical Journal. […]

Read More »


Searching for dark matter in the Earth

The IceCube Collaboration has expanded dark matter studies with a search for annihilations in the center of the Earth. Researchers have used one year of data—May 2011 to May 2012—and have not found an excess of neutrinos above the expected background. The results have set new limits on the annihilation rate of WIMPs in the Earth that are an order of magnitude stronger than previous results by AMANDA and that also improve the IceCube spin-independent cross section limits for a WIMP mass of 50 GeV. This study has just been submitted to The European Physical Journal C. […]

Read More »


Exploring the possibility of detecting extragalactic supernovae with IceCube-Gen2, summer research with IceCube

Growing up on a small, secluded hobby farm in southwestern Wisconsin, the night sky played a major role in my upbringing. Since there is almost no light pollution, the night sky was always bright and clear. In the summer months, my bedtime was determined by the time a specific satellite went over the house. Every year, my family would gather up all the blankets in the house and lay outside to watch meteor showers for hours. From a young age, I loved the idea of learning more about the stars and planets, and as I got into high school, I fell in love with physics. My original plan was to become a high school physics teacher, and I found the University of Wisconsin–River Falls (UWRF) not only has a fantastic physics program but is also involved with IceCube. I had heard about IceCube in 2013, when it won Physics World’s Breakthrough of the Year, and working for IceCube became my new goal and dream. […]

Read More »


Investigating excess of neutrinos from the galactic plane, summer research with IceCube

During my summer abroad, I worked with Dr. Jon Dumm, who is searching for an excess of neutrino events originating in the plane of the Milky Way. Dr. Dumm’s analysis is designed to look for a diffuse neutrino flux from the galactic plane in agreement with a map of where pion decay is expected to occur. However, this analysis is sensitive to a neutrino flux from point sources that are not necessarily distributed as the pion decay map predicts. We simulated four possible models of cosmic-ray source density in the galaxy as proxies for possible distributions of unresolved neutrino point sources. In doing so, we established limits on the total flux from various numbers of sources to which the primary pion-decay-based analysis is sensitive. […]

Read More »




Deciphering the cosmic muon neutrino flux in IceCube

The IceCube Collaboration is now accumulating more statistics in the search for the sources of very high energy neutrinos, but also to learn more about their nature. In a new study, submitted this week to the Astrophysical Journal, the collaboration reports a substantially improved observation of the diffuse muon neutrino flux in the Northern Hemisphere using six years of IceCube data with about a tenfold increase in statistics. Once more, a clear astrophysical contribution has been found, which at the highest energies excludes a purely atmospheric origin at the 5.6 sigma level. Also, the accuracy of the measurement of the spectral properties has been improved.
[…]

Read More »


IceCube search for cosmogenic neutrinos favors heavy nuclei cosmic-ray sources

The IceCube Collaboration has made public today that a new search for cosmogenic neutrinos resulted in two very high energy neutrinos. These neutrinos, which are found to be of astrophysical origin with a 92.3% probability, include the highest energy neutrino detected to date. While of astrophysical origin, the energy of these neutrinos does not match the expectation for a cosmogenic neutrino flux. The lack of evidence for such events in a search of seven years of IceCube data places very strong constraints on the sources of UHECR. Proton-dominated sources are greatly disfavored, and testing mixed and heavy nuclei cosmic-ray sources will require much bigger instruments, such as an extension of IceCube or radio Askaryan neutrino detectors. These results have been submitted yesterday to Physical Review Letters. […]

Read More »


IceCube aims for neutron astronomy

The IceCube Collaboration presents results from a search for sources of high-energy neutrons using four years of data from IceTop, the surface detector array. Researchers have not found any evidence for astrophysical neutrons, but the results have allowed the collaboration to set new limits that constrain the possible galactic neutron sources. These results have just been submitted to the Astrophysical Journal. […]

Read More »