A measurement of the atmospheric electron neutrino spectrum with IceCube

In a new analysis by the IceCube Collaboration, the atmospheric electron neutrino spectrum is measured at energies between 0.1 TeV and 100 TeV, extending previous measurements to higher energies and yielding improved precision. The results, which have been submitted to Physical Review D, find good agreement with models of the conventional electron neutrino flux. […]

Read More »


Latest result from neutrino observatory IceCube opens up new possibilities for particle physics

The South Pole observatory IceCube has recorded evidence that elusive elementary particles called neutrinos changing their identity as they travel through the Earth and its atmosphere. The observation of these neutrino oscillations, first announced in 1998 by the Super Kamiokande experiment in Japan, opens up new possibilities for particle physics with the Antarctic telescope that was originally designed to detect neutrinos from faraway sources in the cosmos. […]

Read More »


Searches for time-dependent neutrino sources with IceCube

Searches with IceCube have so far persistently shown us that more data is needed to reveal the first cosmic ray source. But IceCube researchers are convinced that success also requires a resolute determination to exploit IceCube data in every possible manner. In a new study submitted today to the Astrophysical Journal, the collaboration presents a search for time-dependent astrophysical neutrino sources that did not find any evidence for their existence. The study did however make it possible to set upper limits on the neutrino flux from several source candidates and has proven IceCube’s capabilities for long-term monitoring of sources triggered by multiwavelength information from several experiments. […]

Read More »


Measuring the flavor ratio of astrophysical neutrinos

In a new measurement of the flavor ratio of astrophysical neutrinos, submitted today to Physical Review Letters, the IceCube Collaboration has found good agreement with the standard source model. The collaboration also sets limits on nonstandard flavor compositions, which could be a signature for new physics in the neutrino sector, such as neutrino decay or sterile neutrinos. […]

Read More »



Atmospheric neutrino oscillations measured with three years of IceCube data

Last year, an initial measurement of the neutrino oscillation parameters was a hint that IceCube could become an important detector for studying neutrino oscillations. Today, the IceCube Collaboration has submitted new results to Physical Review Letters that present an improved measurement of the oscillation parameters, via atmospheric muon neutrino disappearance, which is compatible and comparable in precision to those of dedicated oscillation experiments such as MINOS, T2K or Super-Kamiokande. […]

Read More »


More on astrophysical neutrinos yet no track of charmed mesons

The IceCube Collaboration has expanded the search for neutrino interactions in IceCube, lowering the range of deposited energy down to 1 TeV. The goal was a better understanding of the different contributions to the neutrino flux in IceCube and hopefully to measure the charmed-meson component for the first time. The results of this study have been submitted today to Physical Review D. […]

Read More »




Multimessenger search for cosmic sources by initial LIGO-Virgo and IceCube

In a joint analysis by the IceCube, LIGO and Virgo collaborations to be submitted to the journal Physical Review D, researchers aimed to identify GW events and high-energy neutrinos that could originate from the same astrophysical source and to determine their joint significance. No significant coincident events were found, but the search allowed researchers to derive upper limits on the rate of joint sources for a range of source emission parameters. […]

Read More »