IceCube neutrinos give us first glimpse into the inner depths of an active galaxy

For the first time, an international team of scientists have found evidence of high-energy neutrino emission from NGC 1068, also known as Messier 77, an active galaxy in the constellation Cetus and one of the most familiar and well-studied galaxies to date. First spotted in 1780, this galaxy, located 47 million light-years away from us, […]

Read More »







NSF renews IceCube maintenance and operations contract

The National Science Foundation today, March 30, 2016, announced that it has renewed a cooperative agreement with the University of Wisconsin–Madison to operate IceCube. The five-year, $35 million award entails the continued operation and management of the observatory located at NSF’s Amundsen-Scott South Pole Station. In 2013, the IceCube Collaboration reported the first detection of high-energy cosmic neutrinos, opening a new astronomical vista on the universe and on some of its most violent phenomena. […]

Read More »


IceCube confirms the astrophysical nature of high-energy neutrinos with an independent search in the Northern Hemisphere

Today, the IceCube Collaboration announces a new observation of high-energy neutrinos that originated beyond our solar system. This study, which looked for neutrinos coming from the Northern Hemisphere, confirms their cosmic origin as well as the presence of extragalactic neutrinos and the intensity of the neutrino rate. The first evidence for astrophysical neutrinos was announced by the collaboration in November 2013. The results published now in ”Physical Review Letters” are the first independent confirmation of this discovery. […]

Read More »



IceCube pushes neutrinos to the forefront of astronomy

The IceCube Neutrino Observatory is a demonstration of the power of the human passion for discovery, where scientific ingenuity meets technological innovation. Today, nearly 25 years after the pioneering idea of detecting neutrinos in ice, the IceCube Collaboration announces the observation of 28 very high-energy particle events that constitute the first solid evidence for astrophysical neutrinos from cosmic accelerators. Details of the research appear in an article published tomorrow, November 22, in Science. […]

Read More »