A first search for sterile neutrinos in IceCube

The IceCube Collaboration has performed two independent searches for light sterile neutrinos, both with one year of data, searching for sterile neutrinos in the energy range between approximately 320 GeV and 20 TeV. IceCube has not found any anomalous disappearance of muon neutrinos and has placed new exclusion limits on the parameter space of the 3+1 model, a scenario with only one sterile neutrino. These results have been submitted today to Physical Review Letters. […]

Read More »


Improving searches for point sources below 100 TeV

Today, the IceCube Collaboration presents a new technique to lower the energy threshold for neutrino detection while keeping a pointing resolution to within less than a degree. IceCube researchers have used this technique in a joint search with data from a previous analysis using throughgoing muon neutrinos. No point source has been found, but sensitivity for searches below 100 TeV has been improved by a factor of ten. […]

Read More »


A closer look at the cosmic ray anisotropy with IceCube

The IceCube Collaboration is updating the cosmic ray anisotropy maps using 318 billion cosmic-ray-induced muon events detected in IceCube between May 2009 and May 2015. The larger data sample allowed discerning new regions in the anisotropy maps, which shed some light on the physical processes that stir up the variations in the arrival direction of cosmic rays. These results have been recently submitted to The Astrophysical Journal. […]

Read More »


A search for neutrinos in coincidence with the first gravitational wave event

The detection of the first gravitational wave (GW) event by LIGO represents one of the greatest scientific breakthroughs of recent years. After receiving the gravitational wave alert in September 2015 from the Advanced LIGO detector, the IceCube and ANTARES neutrino telescopes analyzed the data they had recorded at the same time in order to search for neutrinos that might have been emitted from the same event. Neither search identified any neutrinos that could be associated with the burst. These results set the first limits on neutrino emission from a GW transient event. […]

Read More »


Further limits on the GRB contribution to astrophysical neutrinos and ultra-high-energy cosmic rays

Today, the IceCube Collaboration announces a new search for neutrino emission from GRBs with a first-ever search that covers all flavors and the full sky. Five events were found to have a low-significance correlation with five GRBs. Consequently, the analysis places tight constraints on current models of neutrino and ultra-high-energy cosmic ray (UHECR) production in GRBs. These results have just been submitted to The Astrophysical Journal. […]

Read More »


Improving dark matter searches with neutrino telescopes

In 2013, the IceCube Collaboration published the world’s best limits on the spin-dependent cross section for weakly interacting dark matter particles. They were derived from the non-observation of annihilation into neutrinos of dark matter gravitationally trapped by the Sun.

Now, the collaboration presents a new likelihood formalism that allows easy integration of any neutrino telescope data into analyses of dark matter theories. […]

Read More »


A search for cosmic-ray sources with IceCube, the Pierre Auger Observatory, and the Telescope Array

In a new study by the IceCube, Pierre Auger, and Telescope Array Collaborations, scientists have looked for correlations between the highest energy neutrino candidates in IceCube and the highest energy cosmic rays in these two cosmic-ray observatories. The results, submitted today to the Journal of Cosmology and Astroparticle Physics, have not found any correlation at discovery level. However, potentially interesting results have been found and will continue to be studied in future joint analyses. […]

Read More »


ANTARES and IceCube, a first joint search for neutrino sources launches a future of further collaboration

New results submitted today to the Astrophysical Journal are the outcome of a combined search for neutrino point sources performed by the ANTARES and IceCube collaborations. No source has been identified, but the combined search improves the sensitivity to point sources by up to a factor of two, which delivers more stringent upper limits on the flux for the candidate sources considered in this analysis. […]

Read More »



On neutrino oscillations

Neutrino physicists spend a lot of time in the dark. As a figurative statement this reflects how difficult neutrinos are to understand, but it also reveals the literal sense that we work with experiments that do not see a lot of sun—and it’s not just the South Pole, it’s also in mines, tunnels, and deep underwater in seas and lakes. But just like a rare neutrino interaction, every so often a brief flash of light offers some new truth about the nature of our universe. […]

Read More »