Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. Now, scientists have demonstrated that the Earth stops very energetic neutrinos—they do not go through everything. The study is published online today by the journal Nature. […]
Research
No neutrino emission from a binary neutron star merger
In a joint effort by the ANTARES, IceCube, Pierre Auger, LIGO, and Virgo collaborations, scientists have searched for neutrino emission from this merger. The search looked for neutrinos in the GeV to EeV energy range and did not find any neutrino in directional coincidence with the host galaxy. The nondetection agrees well with our expectation from short GRB models of observations at a large off-axis angle, which is most likely the case for the GRB detected in conjunction with GW170817. These results have just been submitted to The Astrophysical Journal. […]
Looking for new physics in the neutrino sector
In a new search for nonstandard neutrino interactions, the IceCube Collaboration has tested theories that introduce heavy bosons, such as some Grand Unified Theories. The study resulted in new constraints on these models, which are among the world’s best limits for nonstandard interactions in the muon-tau neutrino sector. These results have just been submitted to Physical Review D. […]
Improved measurements of neutrino oscillations with IceCube
This week, the IceCube Collaboration presents a new measurement of the oscillation parameters that for the first time is competitive with the best measurements to date. These results have just been submitted to Physical Review Letters. […]
Are high-energy neutrinos also produced in the Milky Way?
The IceCube Collaboration presents a new search for neutrino emission associated with the galactic plane with seven years of IceCube data. The results, submitted to The Astrophysical Journal, are not conclusive but set new constraints on the possible galactic contribution. […]
A model-independent observation of an astrophysical neutrino flux
The astrophysical neutrino flux observed by IceCube has been the focus of many studies, by both the IceCube Collaboration and other scientists around the world. The collaboration announces today a new study that finds an excess of muon neutrinos at energies above 126 TeV, which is compatible with recent measurements of the astrophysical neutrino flux and constitutes the first model-independent measurement of this flux. These results have been submitted recently to the European Physical Journal C. […]
The IC86-2017 physics run: better neutrino alerts and a brand-new monitoring system
It’s that time of the year. Down at the South Pole, our team is in the darkness of the austral winter, enjoying beautiful auroras while monitoring IceCube data taking. Up north, the team has completed all updates and checks to the new data systems running live in the IceCube Lab (ICL), sitting on top of the IceCube detector on Antarctica’s surface. […]
IceCube sets new best limits for dark matter searches in neutrino detectors
IceCube has proven to be a champion detector for indirect searches of dark matter using neutrinos. In the most recent study, the collaboration sets the best limits on a neutrino signal from dark matter particles with masses between 10 and 100 GeV. These results have recently been submitted to the European Physical Journal C. […]
Searching for neutrino sources with IceCube cascade events
The IceCube Collaboration presents the first search for neutrino sources using cascade events with an energy above 1 TeV. Although no significant clustering was observed, this method provides an independent technique to search for astrophysical neutrino sources. These results have just been submitted to The Astrophysical Journal. […]
Searching for neutrino emission from 3D-localized gravitational wave sources
The IceCube, ANTARES, Virgo and LIGO collaborations have joined efforts to look for neutrino emission from the second gravitational wave (GW) event as well as from a previous GW candidate. IceCube and ANTARES searched for neutrinos in temporal coincidence and from the directional constraints provided by LIGO. Within 500 seconds around the two GW signals, no neutrino events were found that come within from the signal region in either detector. These results have recently been submitted to Physical Review D. […]