The IceCube Collaboration has recently presented its first measurements of the neutrino inelasticity, which are also the first-ever at very high energies—from 1 TeV up to nearly 800 TeV. The inelasticity distribution was found to be in good agreement with Standard Model prediction and was later used to perform other measurements, such as charm production in neutrino interactions or flavor composition of astrophysical neutrinos. […]
Research
Constraints on neutrino emission from short-lived transient sources
In a new search for neutrino sources, the IceCube Collaboration and other collaborators have looked for short-lived transient sources, including gamma-ray bursts, core-collapse supernovae, or neutron star mergers. The search, which looked for two or more neutrinos detected within 100 seconds from the same location, included transients that might not emit gamma rays and might be pointing to uncharted objects in the universe. The results submitted this week to Physical Review Letters did not identify any individual source but did show that the number of bright short-lived transient neutrino sources must be small or they must be fairly faint. […]
IceCube neutrinos pass a test of a fundamental symmetry in nature
A new measurement of the IceCube Collaboration has put Lorentz symmetry to the test and found—yet again—that neutrinos behave as expected. The results, published in Nature Physics, are the most stringent limits to date in the neutrino sector on the existence of a Lorentz violating field. […]
IceCube neutrinos point to long-sought cosmic ray accelerator
Observations made by the IceCube Neutrino Observatory at the Amundsen–Scott South Pole Station and confirmed by telescopes around the globe and in Earth’s orbit have for the first time provided evidence for a known blazar as a source of high-energy neutrinos. These results are presented in two papers published this week in the journal Science. […]
Heavy dark matter and PeV neutrinos: are they related?
The IceCube Collaboration has tested a few models of heavy dark matter and found no evidence that the high-energy neutrinos can be attributed to the decay of dark matter particles. This nondetection resulted in a new lower limit for the lifetime of dark matter particles with a mass of 10 TeV or above. The paper summarizing these results has just been submitted to the European Physical Journal C. […]
The 2018 IceCube Masterclass: engaging students around the world with IceCube scientists
The fifth edition of the IceCube Masterclass hosted over 300 students at 17 institutions in Belgium, Denmark, Germany, Switzerland, and the United States. […]
A boost to precision measurements in the neutrino sector
With better and larger neutrino telescopes on the horizon, researchers are now designing more efficient analysis techniques that will boost our understanding of neutrinos and advance searches for new physics, including additional neutrino flavors or new interactions. These techniques not only provide more accurate and robust results but also reduce expenses and time in computation that could limit improvements in the design of new detectors or the discovery potential of existing facilities. Details of these new techniques are given in a paper by the IceCube-Gen2 Collaboration submitted this week to Computer Physics Communications. […]
Do fast radio bursts emit high-energy neutrinos?
Although fast radio bursts’ (FRBs) progenitors are supposed to be compact and perhaps catastrophic cosmic events that may also produce neutrinos, IceCube has not detected any such neutrinos that could be associated with a known FRB in six years of data. These results are far from precluding the eventual detection of neutrinos from FRBs in the future, but they have set the best limits yet on how many are emitted. The results have been submitted today to ”The Astrophysical Journal”. […]
A first look at how the Earth stops high-energy neutrinos in their tracks
Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. Now, scientists have demonstrated that the Earth stops very energetic neutrinos—they do not go through everything. The study is published online today by the journal Nature. […]
No neutrino emission from a binary neutron star merger
In a joint effort by the ANTARES, IceCube, Pierre Auger, LIGO, and Virgo collaborations, scientists have searched for neutrino emission from this merger. The search looked for neutrinos in the GeV to EeV energy range and did not find any neutrino in directional coincidence with the host galaxy. The nondetection agrees well with our expectation from short GRB models of observations at a large off-axis angle, which is most likely the case for the GRB detected in conjunction with GW170817. These results have just been submitted to The Astrophysical Journal. […]