ANTARES and IceCube combine forces to search for southern sky neutrino sources

The IceCube Collaboration recently conducted a combined IceCube-ANTARES search for neutrino point-like and extended sources in the southern sky. They didn’t find any significant evidence for cosmic neutrino sources, but the analysis shows the strong potential for combining data sets from both experiments. Their results were submitted to The Astrophysical Journal. […]

Read More »


IceCube rules out last Standard Model explanation of ANITA’s anomalous neutrino events

IceCube isn’t the only neutrino experiment in Antarctica. There is also the ANITA (the ANtarctic Impulsive Transient Antenna) experiment, which flies a balloon over the continent and points radio antennae toward the ground in search of extremely high-energy neutrinos.

The IceCube Collaboration recently followed up on events detected by ANITA and presented their results in a paper submitted today to The Astrophysical Journal. The collaboration found that these neutrinos could not have come from an intense point source. Other explanations for the anomalous signals—possibly involving exotic physics—need to be considered. […]

Read More »


Locally sourced neutrinos? IceCube takes a look

IceCube has not yet found neutrino sources within our galaxy, but there may be sources that are not too much farther out. To test this possibility, the IceCube Collaboration recently performed an analysis scouring the local universe for potential neutrino sources. They conducted two different searches that looked for correlations between neutrino emission and dense regions in a catalog of galaxies called the 2MASS Redshift Survey (2MRS). While they did not find significant sources, they were able to put constraints on neutrino emission from nearby galaxies, which they present in a paper recently submitted to the Journal of Cosmology and Astroparticle Physics. […]

Read More »


Putting neutrino masses in their place (soon!) with the IceCube Upgrade and JUNO

Neutrino mass ordering is one of the foremost problems in neutrino physics today. But two new neutrino oscillation experiments are on the horizon—the IceCube Upgrade and JUNO. So the IceCube Collaboration and the JUNO Collaboration studied the combined performance of their respective experiments, which employ very distinct and complementary routes in order to resolve the neutrino mass ordering. In a paper submitted recently to Physical Review D, they show that a combined analysis could eliminate the wrong mass ordering in as few as three years from the start of data taking. […]

Read More »


What can cascade events tell us about neutrino sources?

Cascade events are more difficult to reconstruct than tracks, which are usually used in searches for astrophysical neutrino sources, but cascades have their own advantages, including providing a better measurement of neutrino energy. In a paper published in The Astrophysical Journal, the IceCube Collaboration outlined recent results from a source search that used seven years of data from cascade events. While they did not find any statistically significant sources of neutrino emissions, this work is an improvement on the previous source search with cascades. […]

Read More »



IceCube and PICO set new constraints on properties of dark matter particles

Dark matter is one of the biggest mysteries in modern astronomy and physics. In a paper recently submitted to the European Physical Journal C, scientists from IceCube and PICO determined new constraints on particle physics properties of dark matter. Though these are less stringent than previous constraints, they take into consideration the latest research on the distribution of dark matter in our galaxy. […]

Read More »



Testing a new technique to search for neutrino point-source populations

The IceCube Collaboration performed a search for point-source populations using a technique called the non-Poissonian template fit (NPTF) and published their findings in a paper submitted to The Astrophysical Journal. This was the first time the NPTF was used on IceCube neutrino data, and while they did not find any neutrino point-source populations, they proved the technique’s viability. […]

Read More »


How to deal with “dust” in the Antarctic ice

The IceCube Neutrino Observatory is an array of over 5,000 optical sensors embedded in a cubic kilometer of ice at the South Pole. Optical impurities in the ice affect how light travels through the IceCube detector and thus how the neutrino interactions appear. In a technical paper submitted to the Journal of Cosmology and Astroparticle Physics, the IceCube Collaboration presents a new method to understand the optical properties of the ice, called the SnowStorm method. […]

Read More »