IceCube performs new measurement of all-flavor neutrino cross section

The number of neutrinos that IceCube detects is dependent on many factors, including the “neutrino cross section”: how likely it is for neutrinos to interact with nuclei in the ice. In a paper submitted today to Physical Review D, the IceCube Collaboration reports a new cross section measurement obtained by using 7.5 years of IceCube data. This is the first such measurement to incorporate all three neutrino flavors. […]

Read More »


Searching for transient neutrino sources with the help of gamma rays

In a paper submitted today to The Astrophysical Journal, the AMON team, together with the IceCube and HAWC collaborations, present the analysis approach that they developed and reveal the first results from their analysis, as applied to three years of archival data from 2015 to 2018. During those three years, they identified two coincident events that met their criteria for distribution as a public alert, but there were no particularly important astronomical sources seen near either position. […]

Read More »


IceCube-Gen2 will open a new window on the universe

In a white paper recently submitted to the Journal of Physics G, the international IceCube-Gen2 Collaboration outlines the need for and design of a next-generation extension of IceCube. By adding new optical and radio instruments to the existing detector, IceCube-Gen2 will increase the annual rate of cosmic neutrino observations by an order of magnitude, and its sensitivity to point sources will increase to five times that of IceCube. […]

Read More »


Searching for neutrino emission from 11 LIGO-Virgo gravitational wave sources

While we have seen neutrinos and electromagnetic radiation with a common origin, researchers have yet to detect neutrinos and gravitational waves coming from the same place. So the IceCube Collaboration recently performed an analysis to look for neutrino emission that correlates with gravitational waves detected by the LIGO and Virgo Collaborations during their first two observing runs, O1 and O2. Their results are described in a paper published today in The Astrophysical Journal Letters. No coincidence was found, but the researchers are already at work on further analyses. […]

Read More »


Sun’s shadow on IceCube shines light on solar magnetic field

The IceCube Collaboration recently performed an analysis to try to expand our understanding of the solar magnetic field by studying the time-dependent cosmic-ray Sun shadow. They also wanted to explore how the cosmic-ray Sun shadow changes at different energy regimes. The results, recently submitted to Physical Review D, show that more solar activity leads to a weaker Sun shadow. There were also indications that, in times of high solar activity, the shadow becomes stronger at higher energies—a hint at Sun-shadow energy dependence that will be explored more in future studies. […]

Read More »



Machine-learning method allows IceCube to study cosmic rays at new-low energies

IceCube has found a way to detect cosmic rays of lower energies previously unreachable by IceTop. In a paper submitted to Physical Review D, “Cosmic Ray Spectrum from 250 TeV to 10 PeV using IceTop,” the IceCube Collaboration explains how they implemented a new two-station trigger as well as the machine-learning method developed to analyze these events […]

Read More »



Looking for dark matter in the center of the Milky Way

Dark matter is one of the biggest mysteries in science today, and neutrinos might be able to help. IceCube and ANTARES Collaborations recently probed a known dark matter hotspot—the center of the Milky Way—by combining data from their respective neutrino telescopes. They did not find any unusual excesses of neutrinos, but they put stronger constraints on the dark matter annihilation cross section averaged over the dark matter velocity. The results of the analysis are outlined in a paper submitted recently to Physical Review D. […]

Read More »


Fast radio bursts and neutrinos: Is there a connection?

Fast radio bursts (FRBs) are some of the most enigmatic phenomena in the universe. These millisecond-long pulses of radio waves most likely originate outside of our galaxy, but we don’t know much more than that. The IceCube Collaboration recently looked for neutrino events that coincided with 28 nonrepeating FRBs and one repeating FRB. Searching for neutrinos emitted from the same part of the sky as FRBs could provide clues to help test models that suggest particle acceleration near the FRB source. Results from this search are outlined in a paper published today in The Astrophysical Journal. […]

Read More »