Exploring new directions with DM-Ice and IceCube coincident events

When I came to Yale three years ago, I did not expect to major in physics. Yet, after taking my first class in the subject, it was not long before its fundamental nature and incredible universality had reeled me in for good. Since then, I have sought out opportunities to explore the field and learn what it really means to be a physicist. I joined Assistant Professor Reina Maruyama’s lab this past January and a few months later found myself working on DM-Ice and IceCube. Now, as I gear up for my final year of college, I am spending my summer on campus, conducting research on coincident muon events between the enormous IceCube (1 cubic km) and comparatively miniature (2,309 cubic cm) DM-Ice17 detectors. […]

Read More »


IceCube confirms the astrophysical nature of high-energy neutrinos with an independent search in the Northern Hemisphere

Today, the IceCube Collaboration announces a new observation of high-energy neutrinos that originated beyond our solar system. This study, which looked for neutrinos coming from the Northern Hemisphere, confirms their cosmic origin as well as the presence of extragalactic neutrinos and the intensity of the neutrino rate. The first evidence for astrophysical neutrinos was announced by the collaboration in November 2013. The results published now in ”Physical Review Letters” are the first independent confirmation of this discovery. […]

Read More »


AMON, the Astrophysical Multimessenger Observatory Network

The Astrophysical Multimessenger Observatory Network (AMON) will link existing and future high-energy astrophysical observatories into a single virtual system, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts and providing alerts to follow-up observatories. […]

Read More »


A combined analysis of the astrophysical neutrino flux in IceCube

The IceCube Collaboration is now revisiting these results in a combined analysis accepted for publication in The Astrophysical Journal. The analysis is based on the results of six individual studies and uses up to three observables—energy, zenith angle and event topology—to derive improved constraints on the energy spectrum and the composition of neutrino flavors of the astrophysical neutrino flux. […]

Read More »


What the atmospheric muon flux in IceCube can tell us about cosmic rays, or even about particle interactions

In a new study presented a few days ago, the IceCube Collaboration reports the potential of atmospheric muons detected in IceCube to help our understanding of important properties of cosmic rays in a wide range of energies. These muons are also shown to be useful for investigating systematic uncertainties in neutrino studies in IceCube. Measurements of the composition of primary cosmic rays, the high-energy spectrum of muons, and the prompt flux are three of the highlights of this paper, which was submitted last Friday to Astroparticle Physics. […]

Read More »


An IceCube neutrino alert triggers the discovery of a supernova

On March 30, 2012, IceCube detected two high-energy neutrino events. IceCube immediately sent an alert to several optical and X-ray telescopes—the Robotic Optical Transient Search Experiment (ROTSE), the Palomar Transient Factory (PTF) and the Swift satellite—and a core-collapse supernova was discovered in the PTF images. However, physicists have shown that this was a coincidental discovery and that this supernova is not likely to be the source of the neutrinos in IceCube. These results have been submitted today to the Astrophysical Journal and are the outcome of a joint study between the IceCube Collaboration and members of the PTF Collaboration, the Swift Collaboration and the Pan-STARRS1 Science Consortium. […]

Read More »


A search for dark matter in the galactic center

In a new analysis of the IceCube Collaboration, a search for dark matter annihilation at the Galactic Center is presented using data from May 2010 to May 2011. The highest density of dark matter in the Milky Way is anticipated to concentrate in its center. Dark-matter self-annihilation should then produce a flux of muon neutrinos and other particles that peaks in the direction of this region, which is seen in the Southern Hemisphere by IceCube. The search did not find a neutrino excess, and the researchers have set new limits on the dark-matter self-annihilation cross section. These results have been submitted today to European Physical Journal C. […]

Read More »


A new year of data for IceCube

Not everyone begins a new year on January 1, right? That includes IceCubers, who decided a while ago that mid May would be a good time to start a new year of data for the South Pole neutrino observatory.

The IC86-2014 physics run ended on May 18, 2015, wrapping up another successful year for the IceCube detector. […]

Read More »


A measurement of the atmospheric electron neutrino spectrum with IceCube

In a new analysis by the IceCube Collaboration, the atmospheric electron neutrino spectrum is measured at energies between 0.1 TeV and 100 TeV, extending previous measurements to higher energies and yielding improved precision. The results, which have been submitted to Physical Review D, find good agreement with models of the conventional electron neutrino flux. […]

Read More »


Latest result from neutrino observatory IceCube opens up new possibilities for particle physics

The South Pole observatory IceCube has recorded evidence that elusive elementary particles called neutrinos changing their identity as they travel through the Earth and its atmosphere. The observation of these neutrino oscillations, first announced in 1998 by the Super Kamiokande experiment in Japan, opens up new possibilities for particle physics with the Antarctic telescope that was originally designed to detect neutrinos from faraway sources in the cosmos. […]

Read More »