University of Wisconsin-Madison

IceCube Explained

The IceCube Lab at the South Pole in Antarctica. 	Image: S. Lidstrom/NSF
The IceCube Lab at the South Pole in Antarctica. Image: S. Lidstrom/NSF

The IceCube Neutrino Observatory is the first detector of its kind, designed to observe the cosmos from deep within the South Pole ice. An international group of scientists responsible for the scientific research makes up the IceCube Collaboration.

Encompassing a cubic kilometer of ice, IceCube searches for nearly massless subatomic particles called neutrinos. These high-energy astronomical messengers provide information to probe the most violent astrophysical sources: events like exploding stars, gamma-ray bursts, and cataclysmic phenomena involving black holes and neutron stars.

The Antarctic neutrino observatory, which also includes the surface array IceTop and the dense infill array DeepCore, was designed as a multipurpose experiment. IceCube collaborators address several big questions in physics, like the nature of dark matter and the properties of the neutrino itself. IceCube also observes cosmic rays that interact with the Earth’s atmosphere, which have revealed fascinating structures that are not presently understood.

Approximately 300 physicists from 48 institutions in 12 countries make up the IceCube Collaboration. The international team is responsible for the scientific program, and many of the collaborators contributed to the design and construction of the detector. Exciting new research conducted by the collaboration is opening a new window for exploring our universe.

The National Science Foundation (NSF) provided the primary funding for the IceCube Neutrino Observatory, with assistance from partner funding agencies around the world. The University of Wisconsin–Madison is the lead institution, responsible for the maintenance and operations of the detector. Funding Agencies in each collaborating country support their scientific research efforts.