
Photon tracking with GPUs in IceCube

Dmitry Chirkina, for the IceCube Collaboration1

aUniversity of Wisconsin, Madison, WI 53703, USA

Abstract

GPUs (graphics processing units) have become increasinglypopular in the recent years for scientific calculations involving large
numbers of similar steps. Photon propagation is a necessarypart of simulating detector response to passing charged particles in
IceCube that is an ideal application for use with GPUs. We discuss the principle ideas and practical issues of running such an
application within the simulation chain used within our collaboration.

Keywords: photon propagation, IceCube

1. Photon tracking: introduction

Traditionally, tracking of the photons in IceCube is per-
formed with photonics [1]. This involves tracking a sufficiently
large number of photons within the detector so that probability
distribution functions can be built for all interesting initial and
final photon coordinates and directions, and for all possible ar-
rival times. These are tabulated or optionally parametrized into
interpolation tables and saved on disk. The tables are then used
during the simulation or reconstruction to estimate the mean
numbers of photons arriving at given times, and the actual num-
bers of photons are sampled from Poisson distributions with
those means.

This process is complicated by the fact that the tables typ-
ically need to be created in 7 or more dimensions and each di-
mension needs to be tabulated with sufficiently small granular-
ity. This normally leads to tables that are so large that theycan-
not be fit into the memory of typical computing nodes on which
the simulation is run. The table generation is slow, the result-
ing simulation suffers from a wide range of binning artifacts,
and the simulation is slow with much time spent loading the
tables into memory. In the recently developed approach some
of these problems are reduced by parametrization and interpo-
lation techniques, which not only reduce the binning artifacts
and improve precision of the tables, but also speed up the sim-
ulation.

Despite the recent improvements the process remains a 2-
step process, in which the photon tables are first created and
then used during the simulation. The reason for this has tradi-
tionally been the fact that running the simulation this way was
still significantly faster than a direct approach, in which pho-
tons are created and propagated as needed, during the courseof
the simulation itself.

Email address: dima@icecube.wisc.edu (Dmitry Chirkin)
1http://icecube.wisc.edu

2. Photon Propagation Code

The photon propagation code (PPC) [2] was initially written
to study the feasibility of direct photon propagation for simula-
tion of events in IceCube. The simple nature of photon prop-
agation physics allowed us to focus on the code optimization,
to make sure the simulation ran as fast as possible. The simu-
lation was written in C++, then re-written entirely in Assembly
for the 32-bit i686 architecture with SSE vector optimizations.
The Assembly version of the program used the SSE instructions
for photon rotation and locating the optical sensor closestto the
photon segment, while the calculation of the scattering angle
was performed in one go using only the registers of the FPU
stack.

A project called i3mcml [3] demonstrated that significant
acceleration of the photon propagation is possible by usingthe
graphics processing units (GPUs). We confirmed this with a
version of PPC that employs the NVIDIA GPUs (graphics pro-
cessing units) via the CUDA programming interface [4]. Re-
cently a new version was written that additionally uses OpenCL
[4], supporting both NVIDIA and AMD GPUs, and also multi-
CPU environments. The relative performance of these different
implementations (for simulating both in-situ light sources, or
flashers, and Cerenkov light from muons) is compared in Table
1. We have studied the simulation with these versions of PPC
and i3mcml and were able to demonstrate excellent agreement
between them.

C++ Assembly GTX 295 GPU
flasher 1.00 1.25 147
muon 1.00 1.37 157

Table 1: Speedup factor of different implementations of PPCcompared to the
C++ version. The GPU used in this comparison was either of thetwo in the
NVIDIA GTX 295 video card.

The reason for the substantial acceleration of PPC on GPUs
is the highly parallel nature of the simulation of the photon
propagation. All of the simulated photons go through the same

Preprint submitted to Nuclear Physics B April 27, 2012

simulation steps (see Figure 1): photon propagation between
the scattering points, calculation of the scattering angleand new
direction, and evaluation of whether the current photon segment
intersects any of the optical sensors of the detector array.The
GPUs are designed to perform the same computational oper-
ation in parallel across multiple threads. Each thread works
on its own photon for as long as the photon exists. When the
photon is absorbed or hits the detector the thread receives the
new photon from a pool of photons for as long as that pool is
not empty. Although a single thread runs slower than a typical
modern computer CPU core, running thousands of them in par-
allel results in the much faster processing of photons from the
same pool on the GPU.

propagation steps
(between scatterings)

new photon created
(taken from the pool)

their execution
(no more photons)

threads complete

execution threads

photon absorbed

Figure 1: Parallel nature of the photon propagation simulation: tracking of
photons entails the computationally identical steps: propagation to the next
scatter, calculation of the new direction after scatter, and evaluation of inter-
section points of the photon track segment with the detectorarray. These same
steps are computed simultaneously for thousands of photons.

3. Simulation with photon propagation code

The direct photon simulation with PPC is typically used in
the two scenarios shown in Figure 2. In the first the in-situ
light sources of the detector are simulated for calibratingthe
detector and the properties of the surrounding ice. It is possible
to very quickly re-simulate the detector response to a variety
of ice scattering and absorption coefficients finely tabulated in
depth bins. This allows for these coefficients to be fit directly,
by finding the combination that is a best simultaneous fit to all
of the in-situ light source calibration data [5]. For the 10 meter
depth bins, 200 coefficients are fitted (with scattering and ab-
sorption defined in 100 layers spanning 1 km of depth of the
detector), with nearly a million possible ice parameter config-
urations tested in less than a week on a single GPU-enabled
computer. This method is intractable with the photonics-based
simulation, as each new parameter set would require generation
of the new set of photonics tables, each generation taking on
the order of a week of computing time of a∼ 100-CPU cluster.

In the second scenario the Cerenkov photons created by
the passing muons and cascades are simulated as part of the
larger simulation of the detector response to atmospheric and
other fluxes of muons and neutrinos. The simulation is able
to account for some effects that are difficult to implement with
the photonics-based simulation, because their simulationwould
lead to additional degrees of freedom, thus increasing the size
of the parametrization effort and tables many-fold. One of these

Figure 2: Typical simulation scenarios: photons emitted bythe detector are
tracked as part of the calibration procedure (left). Cerenkov photons emitted by
a passing muon and cascades along its track are tracked to simulate the typical
IceCube events (right).

is the tilt of the ice layers, i.e., dependence of the ice parame-
ters not only on the depth, but also on the xy surface coordinates
(shown in Figure 3).

Relief x3

Meters from Hole 50 along 225o SW

z-
co

or
di

na
te

 a
t s

tr
in

g
50

 [
m

]

-600

-400

-200

0

200

400

600

800

100 200 300 400 500 600 700 800 900

Figure 3: Extension of ice layers along the average gradientdirection (taken
from [6]). The y-axis shows the layer shift (relief) from itsposition at the
location of a reference string at the distance shown on the x-axis from this
string along the average gradient direction (225 degrees SW). The relief shown
is amplified by a factor of 3 for visual clarity of the ice layertilt.

Effects that are treated precisely with PPC (and only ap-
proximately with photonics) include the simulation of the lon-
gitudinal profile of light generation by cascades and the angular
distribution of the Cerenkov photons around the emitting muons
or cascades.

Other effects implemented recently only into PPC include
the direct simulation of the somewhat different ice properties in
the column of ice refrozen around the detector strings afterthey
have been deployed; and the slight azimuthal dependence of the
scattering function.

4. Concurrent execution and runtime optimization

PPC keeps track of several execution time counters that help
judge the performance of the GPU code. One counter operates

2

����

��� ��� ��� ������������

��� ��� �������������	�

���

���

���

���

���

���

���

���

����������

������������

��������

����������

���������

������

��������

�����������

�����������

�������������

�����	�������������������

������������������������

���� ������ ��	���������

����������������������!

"���������������������#��

�������������������������$����

Figure 4: Concurrent execution on CPU and GPU sides. Two possible solutions
are shown: the first (top) requires running at least two ppc threads was eventu-
ally replaced with the solution (bottom) that is enabled in asingle thread.

on the CPU side, by calculating the time elapsed waiting for
the GPU code to return. While waiting for the GPU code the
CPU can run other parts of the simulation (e.g., trigger simula-
tion), but to maximize the use of the GPUs these parts should
finish quicker than the GPU part. The typical utilization of the
GPUs achieved in our tests is& 90%. The implementation of
the concurrent execution of the program on both CPU and GPU
sides is facilitated by the fact that the GPU side works on its
own memory buffer, which is exchanged with the main com-
puter memory buffer only at the beginning or at the end of the
execution on the GPU side. So, while the CPU processes pho-
ton detector hits created by the previous run on the GPU, the
GPU is running through the photons previously prepared by the
CPU (see Figure 4).

The other two execution time counters calculate the mini-
mum and maximum time spent by different threads running on
the GPU. If these are close to each other, all execution unitsof
the GPU have been equally loaded. The difference we observe
is typically on the order of∼ 0.5%.

5. Hardware considerations: our GPU cluster

The simulation of a single day of experimental background
data of the full IceCube detector completes in about 10 days
of calculation on a small 3-computer GPU cluster equipped
with 18 GPUs (3 NVIDIA GTX 295 cards per computer, each
card contains 2 GPUs). This 3-computer cluster was built from
consumer-available parts for approximately $10k. This cluster
is assisted by a larger CPU-only computing cluster that runsthe
simulation of cosmic rays and several other tasks.

Unfortunately we experienced problems with 3 out of the
24 GPUs that we have experimented with. The problems in-
cluded jobs exiting with errors, GPUs locking up, or sometimes
even the entire computer locking up and requiring rebooting.
Further investigation revealed that the jobs that fail alsoocca-
sionally produce NANs or INFs in their GPU threads. With
a small bit of in-line assembly we found that only threads run-
ning on specific hardware multiprocessors (MPs) on each of the
faulty GPUs (each of the GTX 295 GPUs has 30 MPs) are af-
fected. By checking within threads during execution whether
they are running on the faulty MP and immediately stopping

those threads it was possible to use the faulty GPUs for calcu-
lation at 29/30 of its capacity. The jobs running on these GPUs
are 3% slower, but run without further problems. We do con-
tinuously monitor and record the unexpected NAN or INF con-
ditions in the GPU threads or problems reported by the CUDA
interface; however these became extremely rare after disabling
the 3 faulty MPs as described above.

To optimize the use of the GPU-enabled computers fur-
ther we are experimenting the Directed Acyclical Graph (DAG)
tools [7]. This involves separating simulation segments into
tasks, and assigning these tasks to DAG nodes. DAG assigns
separate tasks to different computer nodes; execution of photon
propagation simulation is performed on dedicated GPU nodes.

For many simulations the GPU segment of the simulation
chain is much faster than the rest of the simulation. For these, a
small number of GPU-enabled machines can consume the data
from a large pool of CPU cores. However, the optimal DAG
configuration differs depending on the specific simulation.

We are currently running the GPU simulation routinely on
our cluster at UW-Madison, which is being upgraded to include
48 more Tesla M2070 GPUs (built around the 3 x DELL Pow-
erEdge C410x and 6 x DELL PowerEdge C6145 for∼ $200k).
We are experimenting with running the PPC-based simulation
on other IceCube sites in U.S., Canada, and Germany.

6. Concluding remarks

We have developed a photon propagation tool that can re-
place the older two-step photon tracking paradigm in certain
situations, while achieving more precision, better description
of the physics of the process and shorter run time. The program
is capable of running on both CPU cores and GPU hardware,
achieving very significant speed up (factors in excess of∼ 100)
on the latter.

Although we have encountered some hardware problems
while running on 3 out of 24 of our consumer-grade GPU cards,
it was possible to identify and disable the faulty parts of the
GPUs and continue to use the problem cards at 97 % capacity.
We are in a process of building a professional-grade clusterof
high-end GPU nodes, which will contribute to further produc-
tion of the simulated data.

References

[1] J. Lundberg, et al., Light tracking through ice and water- scattering and ab-
sorption in heterogeneous media with photonics, Nucl. Instrum. Methods
A 581 (2007) 619. arXiv:astro-ph/0702108v2.

[2] D. Chirkin, photon propagation code:
http://icecube.wisc.edu/~dima/work/WISC/ppc.

[3] T. Abuzayyad, i3mcml: http://wiki.icecube.wisc.edu/index.php/i3mcml.
[4] NVIDIA CUDA: http://www.nvidia.com/cuda.
[5] D. Chirkin, et al., Study of south pole ice transparency with icecube

flashers, Contribution to the 32st International Cosmic RayConference,
Beijing, China, 11-18 August 2011, session HI.2.3, contribution 0333.

[6] R. C. Bay, et al., South pole paleowind from automated synthesis of ice
code records, J. Geophys. Res. 115 (2010) D14126.

[7] DAG: http://en.wikipedia.org/wiki/directedacyclicgraph.

3

