simulation software and simulation production in IceCube

Paolo Desiati & Juan Carlos Díaz Vélez
University of Wisconsin - Madison

MANTS 2009
Berlin

September 26th, 2009
simulation (coordinator Alex Olivas)
simulation chain

- generator
- propagator
- ice properties + pmt
- hit generator + noise
- detector response
 - PMT simulator
 - DOM simulator
- detector response
 - Trigger simulator
- filter/processing
simulation chain
simulation chain

- physics input
 - generator
 - propagator
 - ice properties + pmt
 - hit generator + noise
- detector response
 - PMT simulator
 - DOM simulator
 - detector response
 - Trigger simulator
- filter/processing
simulation chain

```
physics input

generator

photontables

hit generator + noise

PMT simulator
DOM simulator

ice properties + pmt
detector response

trigger simulator

filter/processing
```
simulation chain

- Generator
- Propagator
- Photontables
- Ice properties + PMT
- Hit generator + noise
- Detector response
 - PMT simulator
 - DOM simulator
- Detector response
 - Trigger simulator
- Filter/processing
generators: CORSIKA

- currently using CORSIKA v6.720 (→ v6.900)
 - QGSJET-II : ~30% lower µ rate than exp
 - SIBYLL v2.1 : within 10% of exp µ rate
 - EPOS v1.60 : ~30% higher µ rate than exp

poly-gonato model of CR flux & composition (Hörandel)

CORSIKA up to Fe (27)

EGCR not modeled
generators: CORSIKA

- bulk \(\mu\) energy \(\sim 1-5\) TeV (\(\Rightarrow\) CR energy \(\sim 10-50\) TeV)

 - poly-gonato model and easier to use

 - weighted events: \(\propto E^{-\gamma+1}\)
 - better livetime efficiency @ 10 TeV but poor efficiency @ TeV
 - energy-targeted generation of (H, He, CNO, Mg, Fe) with \(E^{-1(2)}\)
 - coincidence of uncorrelated events contribute \(\sim 20\%\) in IC40
 - very important for physics analyses
2-component by Glasstetter et al, 1999

poly-gonato model fails > 10-100 PeV & @ horizon

using individual CR masses for re-weighting
coincident atmospheric shower events in IceCube
generators: neutrino-generator, Juliet

- produces a $E^{-\gamma} \nu_\mu, \nu_e, \nu_\tau$ with
 - PRELIM Earth’s density model
 - homogeneous density
 - CTEQ5 parton distribution functions
 - CTEQ6 ~ 1% difference

- cross section re-evaluation based on HERA data (Anchordoqui, Cooper-Sarkar, Sarkar)
 - prop & interaction of neutrinos into a weight: flexible spectral weight
 - Honda 2007, Bartol, extra-terrestrial fluxes, ...
propagator: MMC, Juliet

- also a neutrino generator it propagates μ, e, τ & monopoles

Figure 35: Bremsstrahlung cross section parameterizations for muons
Figure 37: Photon-nucleon cross sections, as described in the text: Kokoulin [45], W. Rhode [46], BB 1981 [47], ZEUS 94 [48], ALLM 91 and 97 [49], Butkevich [50]. Curves 5-7 are calculated according to \(\sigma_{\gamma N} = \lim_{Q^2 \rightarrow 0} \frac{4\pi^2 \alpha F^N_{\gamma}}{Q^2} \).

Figure 38: Photonuclear energy losses (divided by energy), according to formulae from Section 9.3. Higher lines for the parameterizations 1-4 include the hard component [51], higher lines for 5-7 calculate shadowing effects as in Section 9.3.3, lower as in Section 9.3.2.
hit (i.e. p.e.) generator

- \(\mu \) energy lost + cascades \(\rightarrow \) photons \(\rightarrow \) p.e.

- photon propagation: ice properties + PMT response + DOM glass/gel

- pre-generated lookup table: amplitude ad time distribution
PMT simulator, romeo

- sigle photo electron template

- PMT saturation model
DOM mother board simulation

- core of detector simulation
 - digitization & timing @ MB

![Diagram of DOM mother board simulation](image)

![Graphs showing 29.55/10 Hz decay in channel 0](image)
simulation production
quick overview @ high level : where it stands

- geometry calibration detector status
- simulation release
- offline filter/processing
- dataset settings priorities
- simulation production
- low level checks verification
- high level verification
- physics working groups
- software support and development
quick overview @ high level: how it runs
from demand to production plan

- detector (geometry), calibration configuration defined
- simulation (filtering/processing) software are frozen and tested

- working group coordinators determine needs for physics analyses

- needs are quantified in terms of **amount** of background & signal to produce
 - physics parameters and det. configuration are determined (tested)
 - physics datasets (i.e. sim data for analyses) are defined
 - benchmark datasets (i.e. sim data for systematics) are determined
 - set up simulation dataset configurations (**templates**)
from plan to production: the sites

<table>
<thead>
<tr>
<th>site</th>
<th>contact person</th>
<th>farm type</th>
<th>cpu type</th>
<th>#cores</th>
<th>core speed (GHz)</th>
<th>memory/core (GB)</th>
<th>staging storage (GB)</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW-GLOW</td>
<td>J.C. Diaz Vélez, P. Desiati</td>
<td>grid</td>
<td>Intel Xeon 32bit</td>
<td>60</td>
<td>2.80GHz</td>
<td>1</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grid</td>
<td>Intel Xeon 64bit</td>
<td>60</td>
<td>3.20GHz</td>
<td>2</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td>UW-CHTC</td>
<td>J.C. Diaz Vélez, P. Desiati</td>
<td>batch</td>
<td>Intel Xeon E5440</td>
<td>146</td>
<td>2.8 GHz</td>
<td>1.5</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch</td>
<td>another type</td>
<td>146</td>
<td>another speed</td>
<td>2</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td>UW-NPX2</td>
<td>J.C. Diaz Vélez, P. Desiati</td>
<td>batch</td>
<td>Dual Core AMD Opteron</td>
<td>200</td>
<td>2.41 GHz</td>
<td>1-2</td>
<td>??</td>
<td>offline</td>
</tr>
<tr>
<td>UMD</td>
<td>B. Christy, E. Blaufuss</td>
<td>batch</td>
<td>AMD Opteron(tm) Processor</td>
<td>146</td>
<td>2.50</td>
<td>4</td>
<td>1000</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMD Opteron(tm) Processor</td>
<td>120</td>
<td>2.50</td>
<td>4</td>
<td>1000</td>
<td>online</td>
<td></td>
</tr>
<tr>
<td>PSU</td>
<td>D. Grant</td>
<td>batch</td>
<td>Dual 3.0 GHz Intel Xeon 3160 (Woodcrest) Dual-Core Processors</td>
<td>560(xc) + 1100 (xj) + 560 (xi)</td>
<td>3.0</td>
<td>8 (50%)</td>
<td>16 (50%)</td>
<td>32(xi)</td>
</tr>
<tr>
<td>LBNL-PDSF</td>
<td>J. Kiryuk</td>
<td>batch</td>
<td>Quad-Core AMD Opteron(tm) Processor 2350</td>
<td>200</td>
<td>2.01</td>
<td>2</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch</td>
<td>Dual-Core AMD Opteron(tm) Processor 2220</td>
<td>52</td>
<td>2.81</td>
<td>2</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch</td>
<td>AMD Opteron(tm) Processor 248</td>
<td>31</td>
<td>2.20</td>
<td>2</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td>bartol</td>
<td>J. Eisch, X. Bai</td>
<td>batch</td>
<td>8-Core AMD Opteron</td>
<td>13</td>
<td>2.43 GHz</td>
<td>2</td>
<td>100GB/module</td>
<td>online</td>
</tr>
<tr>
<td>LONI</td>
<td>J.C. Diaz Vélez, P. Desiati</td>
<td>batch (Eric)</td>
<td>Intel Xeon 64bit</td>
<td>256</td>
<td>2.33 GHz</td>
<td>2</td>
<td>/work 100GB</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch (Oliver)</td>
<td>Intel Xeon 64bit</td>
<td>256</td>
<td>2.33 GHz</td>
<td>2</td>
<td>/work 100GB</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch (Louie)</td>
<td>Intel Xeon 64bit</td>
<td>256</td>
<td>2.33 GHz</td>
<td>2</td>
<td>/work 100GB</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch (Pos.)</td>
<td>Intel Xeon 64bit</td>
<td>256</td>
<td>2.33 GHz</td>
<td>2</td>
<td>/work 100GB</td>
<td>online</td>
</tr>
<tr>
<td>Aachen</td>
<td>D. Boersma, M. Schunck</td>
<td>grid</td>
<td>Intel Xeon 64bit (E5345)</td>
<td>100 (max 2000)</td>
<td>2.33 GHz</td>
<td>2</td>
<td>15TB on SE</td>
<td>online</td>
</tr>
<tr>
<td>Dortmund</td>
<td>D. Piahover</td>
<td>grid</td>
<td>Intel(R) Xeon(R) CPU X5680 Dual</td>
<td>2048 (max)</td>
<td>2.66</td>
<td>1.5</td>
<td>10TB on SE</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grid</td>
<td>Intel(R) Xeon(R) CPU X5670 Dual</td>
<td>200 (max)</td>
<td>2.00</td>
<td>1</td>
<td>6TB on SE</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch</td>
<td>Glovertown 64bit</td>
<td>220</td>
<td>2.3</td>
<td>2</td>
<td>250/blade</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>batch</td>
<td>Hapertown 64bit</td>
<td>300</td>
<td>2.8</td>
<td>4</td>
<td>250/blade</td>
<td>online</td>
</tr>
<tr>
<td></td>
<td></td>
<td>grid</td>
<td>Glovertown 64bit</td>
<td>300</td>
<td>2.3</td>
<td>2</td>
<td>250/blade</td>
<td>online</td>
</tr>
<tr>
<td>SweGrid</td>
<td>H. Johansson</td>
<td>grid</td>
<td>Intel Xeon E5430</td>
<td>125 (allocated), 1950 (max)</td>
<td>2.86 GHz</td>
<td>2</td>
<td>??</td>
<td>online</td>
</tr>
<tr>
<td>Brussels</td>
<td>??</td>
<td>grid</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>??</td>
<td>offline</td>
</tr>
</tbody>
</table>
from plan to production: the sites

• assess data size and **CPU** time & distribute jobs throughout production sites
the production brain: IceProd (Juan Carlos Díaz Vélez)

- cataloging steering params & software versions for simulation datasets
- distributed job management and monitoring system
- written in python
- daemons manage cluster job submission
- Jobs communicate to daemons via SOAP
IceProd: the daemons
IceProd: job management
IceProd: distributed computing system

- adapt to different sites and **batch** and **grid** systems

 - PBS, sge, condor, ...

 - GLOW, Grid Engine, Nordugrid (Swegrid), Open Science Grid, LONI

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Institution</th>
<th>System Type</th>
<th>Version</th>
<th>soaptray (pid)</th>
<th>soapmon (pid)</th>
<th>soapqueue (pid)</th>
<th>soapdh (pid)</th>
<th>soaphisto (pid)</th>
<th>Last Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>aachen-grid</td>
<td>RWTH Aachen</td>
<td>glite.gLite</td>
<td>1.2.3</td>
<td>RUNNING (23639)</td>
<td>RUNNING (23642)</td>
<td>RUNNING (23641)</td>
<td>RUNNING (23637)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:47:45</td>
</tr>
<tr>
<td>24</td>
<td>ALICEnext</td>
<td>BU-Wuppertal</td>
<td>alicenext</td>
<td>1.0.5</td>
<td>STOPREQUEST (15759)</td>
<td>STOPPED (15761)</td>
<td>STOPREQUEST (15760)</td>
<td>STOPREQUEST (15758)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:29:44</td>
</tr>
<tr>
<td>78</td>
<td>bartol</td>
<td>Bartol</td>
<td>sge</td>
<td>trunk</td>
<td>RUNNING (28867)</td>
<td>RUNNING (28869)</td>
<td>RUNNING (28868)</td>
<td>RUNNING (28865)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:17:33</td>
</tr>
<tr>
<td>77</td>
<td>CHTC</td>
<td>UW-Madison</td>
<td>condor,Condor</td>
<td>trunk</td>
<td>RUNNING (17572)</td>
<td>RUNNING (18365)</td>
<td>RUNNING (17573)</td>
<td>RUNNING (17571)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:17:33</td>
</tr>
<tr>
<td>9</td>
<td>desy</td>
<td>DESY</td>
<td>sge</td>
<td>1.1.5</td>
<td>RUNNING (6690)</td>
<td>RUNNING (6693)</td>
<td>RUNNING (6692)</td>
<td>RUNNING (6688)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:17:33</td>
</tr>
<tr>
<td>79</td>
<td>EGEE</td>
<td>Dortmund grid</td>
<td>glite.gLite</td>
<td>trunk</td>
<td>RUNNING (2676)</td>
<td>RUNNING (2679)</td>
<td>STOPREQUEST (2678)</td>
<td>RUNNING (2674)</td>
<td>DISABLED (N/A)</td>
<td>2009-06-26 18:45:06</td>
</tr>
<tr>
<td>92</td>
<td>EGEE.Madison</td>
<td>EGEE</td>
<td>glite.gLite</td>
<td>trunk</td>
<td>DISABLED (N/A)</td>
<td>DISABLED (N/A)</td>
<td>RUNNING (14985)</td>
<td>RUNNING (14956)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:29:14</td>
</tr>
<tr>
<td>8</td>
<td>FearTheTurtle</td>
<td>UMD</td>
<td>sge</td>
<td>1.2.3</td>
<td>RUNNING (25508)</td>
<td>RUNNING (25518)</td>
<td>RUNNING (25509)</td>
<td>RUNNING (25507)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:21:16</td>
</tr>
<tr>
<td>1</td>
<td>GLOW</td>
<td>UW-Madison</td>
<td>condor,Condor</td>
<td>trunk</td>
<td>RUNNING (27144)</td>
<td>RUNNING (27146)</td>
<td>RUNNING (27145)</td>
<td>RUNNING (27143)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:17:49</td>
</tr>
<tr>
<td>126</td>
<td>glowworm</td>
<td>UW-Madison</td>
<td>condor,Condor</td>
<td>trunk</td>
<td>RUNNING (18374)</td>
<td>RUNNING (19333)</td>
<td>RUNNING (18375)</td>
<td>RUNNING (18372)</td>
<td>DISABLED (N/A)</td>
<td>2009-09-17 15:18:58</td>
</tr>
<tr>
<td>25</td>
<td>katrina</td>
<td>Southern University</td>
<td>pbs</td>
<td>1.1.2</td>
<td>DISABLED (N/A)</td>
<td>RUNNING (15170)</td>
<td>STOPREQUEST (15169)</td>
<td>RUNNING (15167)</td>
<td>DISABLED (N/A)</td>
<td>2009-05-04 13:17:18</td>
</tr>
</tbody>
</table>
IceProd: web interface
production monitoring and statistics collection
production history and configurations search engine
IceProd: Community

Ticket System:

- Document discussions on requests
- Link to a given dataset

Daily Email Usage Report

```plaintext
<table>
<thead>
<tr>
<th>Ticket</th>
<th>Requestor</th>
<th>Subject</th>
<th>Status</th>
<th>RT Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>10954</td>
<td>silvestr</td>
<td>Re: [iccube-e] Simulation production status August 4, 2009</td>
<td>new</td>
<td>RT#10954</td>
</tr>
<tr>
<td>10953</td>
<td>desiatr</td>
<td>Re: [iccube-e] Simulation production status August 4, 2009</td>
<td>new</td>
<td>RT#10953</td>
</tr>
<tr>
<td>10934</td>
<td>mudgast</td>
<td>Re: [Simprod] IC22 Nu* with stretched tables</td>
<td>open</td>
<td>RT#10934</td>
</tr>
<tr>
<td>10931</td>
<td>desiatr</td>
<td>Re: [Simprod] IC22 Nu* with stretched tables</td>
<td>resolved</td>
<td>RT#10931</td>
</tr>
<tr>
<td>10929</td>
<td>desiatr</td>
<td>Benchmark dataset for Earth's core analysis</td>
<td>resolved</td>
<td>RT#10929</td>
</tr>
<tr>
<td>10804</td>
<td>desiatr</td>
<td>[Pwz: Re: [Simprod] request for nugen_nunu E+μ simulation using &quot;stretched ice&quot;]</td>
<td>resolved</td>
<td>RT#10804</td>
</tr>
<tr>
<td>10802</td>
<td>whelanitz</td>
<td>Re: nugen_nunu for OM sensitivity systematics study</td>
<td>resolved</td>
<td>RT#10802</td>
</tr>
<tr>
<td>10801</td>
<td>desiatr</td>
<td>Re: nugen_nunu for OM sensitivity systematics study</td>
<td>resolved</td>
<td>RT#10801</td>
</tr>
<tr>
<td>10765</td>
<td>juancarlos</td>
<td>Benchmark datasets with PPC</td>
<td>new</td>
<td>RT#10765</td>
</tr>
<tr>
<td>10667</td>
<td>juancarlos</td>
<td>IC22 Nu* production without CMC</td>
<td>resolved</td>
<td>RT#10667</td>
</tr>
<tr>
<td>10666</td>
<td>desiatr</td>
<td>Re: IC22 Nu* production without CMC</td>
<td>open</td>
<td>RT#10666</td>
</tr>
<tr>
<td>10836</td>
<td>desiatr</td>
<td>Re: [iccube-e] Brief production status</td>
<td>resolved</td>
<td>RT#10836</td>
</tr>
<tr>
<td>10235</td>
<td>juancarlos</td>
<td>Simulation Data Cleanup</td>
<td>new</td>
<td>RT#10235</td>
</tr>
<tr>
<td>10197</td>
<td>juancarlos</td>
<td>binning bag: re-simulate detector for high cut level events.</td>
<td>resolved</td>
<td>RT#10197</td>
</tr>
<tr>
<td>9761</td>
<td>juancarlos</td>
<td>Produce samples of in-ice CORSIKA with different atmospheric models</td>
<td>resolved</td>
<td>RT#9761</td>
</tr>
<tr>
<td>9705</td>
<td>Elisa.Rosconi</td>
<td>Re: Request for nugen_nunu simulation with different DOM sensitivities</td>
<td>resolved</td>
<td>RT#9705</td>
</tr>
<tr>
<td>9702</td>
<td>whelanitz</td>
<td>Re: Request for nugen_nunu simulation with different DOM sensitivities</td>
<td>resolved</td>
<td>RT#9702</td>
</tr>
<tr>
<td>9700</td>
<td>SRKlein</td>
<td>Re: Request for nugen_nunu simulation with different DOM sensitivities</td>
<td>resolved</td>
<td>RT#9700</td>
</tr>
</tbody>
</table>
```

Simprod Usage Summary for Thu Apr 26 10:00:00...

- **sys_t**: 619934.749814
- **ox**: 7048.0
- **usr_t**: 79776955.6935
- **real_t**: 119054545.388
- **suspended**: 430.0
- **error**: 0.0
- **events**: 1210641.0

Simprod mailing list

Simprod@icecube.wisc.edu

http://www.icecube.wisc.edu/mailman/listinfo/simprod
IceProd : GUI

![IceProd GUI Image]

- **URL:** https://condor.icecube.wisc.edu:9080
- **Events:** 0
- **Iterations:** 1
- **IceProdPre Modules Services IceProdPost Projects**

IceProdPre
- **name:**
 - generate_corsika i3.IceTray

Parameter Table
- **Type**	**Name**	**Value**	**Unit**
int | mjd | $steering(mjd_09)$ |
string | IPEmoduleURL | $steering(SCRIPTS::repository)/simulation/generators.py |
string | IPEmoduleClass | generators.CorsikaIC |
string | gcdfile | $steering(gcdfile_09)$ |
string | outputfile | $steering(current_file)$ |
string | summaryfile | $steering(summaryfile)$ |
IceProd: production verification
simulation verification
extra
flow of experimental and simulation data

data	**on-line**	**off-line**	**physics analyses**
experimental | filter @ South Pole | level 1 filtering (recreate on-line filter) | level 3 processing | physics

DAQ | P&F computing | spade | core computing | working groups

simulation generation | level 1 filtering (recreate on-line filter) | level 2 processing | level 3 processing | physics

distributed computing | working groups
how to handle photon tables

- split jobs in pieces, each of which uses a subsample of photon tables (~700 MB)
- run jobs in sequence in the same node

► brake simulation chain in separate trays
how to handle photon tables

Use Condor DAGMan to divide a simulation job into multiple Condor jobs

Each Condor job is called a “task” that runs part of a simulation job

Status updates are tracked for each task in the DB and displayed on the web