





## Searching for the Highest Energy Neutrinos with the Radio Detection Technique

# **Brian Clark**

Michigan State University Department of Physics and Astronomy

February 9, 2021 19<sup>th</sup> Annual AAPF Symposium—"Phoenix, AZ"









# Why Study Neutrinos?



#### Unique Messengers to distant (>100Mpc) universe

• Cosmic rays >10<sup>19.5</sup> eV attenuated, e.g. the GZK process

$$p + \gamma \rightarrow \Delta^+ \rightarrow p(n) + \pi^0(\pi^+)$$

- $\rightarrow$  Screens extragalactic (>100 MPc) sources
- $\gamma$ -rays annihilate w/ CMB @ ~1 TeV

#### **Observational Advantages**

- Chargeless = point back to source
- Weakly interacting = no observation horizon





#### **Complimentary Probes**

- Cosmic rays: pions from GZK process decay into neutrinos
- Cosmic ray accelerators •
  - Gamma Ray Bursts (GRBs)–leptonic vs hadronic models
  - Active Galactic Nuclei (AGN)

#### **Exciting Start!**

February 9, 2021

- 2017—Binary Neutron Star (GW + Light)
- 2018—Flaring Blazar (Neutrino + Light)
- 2021—Neutrino + GW??

#### Fast, all-sky, broadband follow-up is very important! (Fermi, Swift, ZTF, ASAS-SN, etc.)



Astro2020 Science White Paper

Astrophysics Uniquely Enabled by Observations of High-Energy **Cosmic Neutrinos** 

Thematic Area: Multi-Messenger Astronomy and Astrophysics









# The (Radio) Cherenkov Effect

- Relativistic neutrino-induced particle showers emit Cherenkov radiation in media
- Wavelengths the size of the bunch (~10cm) add coherently and form broadband (200 MHz-1.2GHz) radio *pulse*









## **Askaryan Radio Array**

**Calibration Pulse** 

- Cubical lattice ("station") at 200m depth
- 8 VPol & 8 HPol antennas deployed









## A Question of Scale

Low fluxes (~10/km<sup>3</sup>/yr) + low crosssections ( $L_{int}$ ~300km in rock)  $\rightarrow$  need >1-100 km<sup>3</sup> of target







February 9, 2021





#### **Diffuse Neutrino Search**

- A2 and A3 collecting data since Feb 2013
  —10 months of data published previously
- Published expansion to the 2013-2016 data set in August 2020 (PRD 102, 043021)-- 5x as much data!

Special thanks to my co-analysts Ming-Yuan Lu and Jorge Torres (>40TB raw data, 580M events)











## **Separating Signal and Background**

- Linear discriminant separates backgrounds from neutrinos
- Optimize cut for best limit (~0.1 passing events/year)







## **Analysis: Results**

- Observe no statistically significant excess on background of 10<sup>-2</sup>
- Result is best limit set by in-ice radio neutrino detector, and uses only half the data on archive already
- By 2022, ARA will have world-leading sensitivity and carve out exciting new parameter space







# **Improving Analysis Efficiencies**

- One of our goals: improve analysis efficiencies
- Project being led by Kaeli Hughes at U Chicago
  - Leverages our low-threshold triggering system at A5
  - Along with a Fisher discriminant







## **Reconstructing Neutrinos**

- One of our other goals: develop and refine reconstruction of neutrino signals
  - Vertex location
  - Polarization angle
- Work being done in collaboration with J. Torres and A. Connolly at OSU
  - For modest cuts, we are able to reconstruct the signal polarization angles to ~±10°

 $\Omega_{reco} - \Omega_{true} \, [deg]$ 30  $\Psi_{reco} - \Psi_{true} \, [deg]$  $\Delta\Omega$ , 68% events  $\Delta \Psi$ , 68% events 20Median [deg] 100 -10Plot by J. Torres -2017.017.518.018.519.019.520.020.5 $\log_{10} (E_{\nu}/eV)$ 

 $SNR_H > 3 + SNR_V > 3 + saturation cut$ 





# The Future of Neutrino Astronomy at South Pole



IceCube-Gen2 is planned, including a radio array (see white paper, arXiv 2008.04323)







# **The Future of Neutrino Astronomy at South Pole**



IceCube-Gen2 is planned, including a radio array (see white paper, arXiv 2008.04323)







# **Summary**

- Neutrinos are important and complimentary messengers to the cosmos
- ARA 2x4yr analysis is best limit by inice radio detector, using only ½ of available data; ARA will be worldleading by 2022
- 3. The future is bright for neutrino astronomy, and new instruments are coming in the next decade (Gen2, etc.)





#### Research generously supported by:

- NSF AAPF Award 1903885
- NSF Awards 1255557, 1806923, 1404212