

The Quest for UHE Neutrinos

Brian Clark

CCAPP Seminar The Ohio State University Department of Physics

July 16, 2019

Why Study UHE Neutrinos?

*Ultra-High Energy = >10¹⁶eV

<u>Astrophysics Motivation</u>: Only probes of the highest energies at cosmic distances

 Cosmic rays >10^{19.5}eV attenuated after ~50 MPc, e.g. GZK effect

$$p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+$$

 Photons >~10 TeV annihilate on CMB/EBL, scatter off dust

Particle Physics Motivation: Probe cross

sections at energies above accelerators

 EeV (10¹⁸ eV) neutrino in ice = COM energy of ~45 TeV

Neutrinos and Multimessenger Astronomy

Complimentary Probes

- Cosmic rays: pions from GZK process decay into neutrinos
- Probe accelerators directly—e.g., blazars

Rare Signal

- Low fluxes (~few/km³/yr) and low crosssections (interaction length ~300km in rock)
- Need Big detectors: ~100 km³ of target volume to enable routine detections

Auger (air shower)

Askaryan Effect

- Neutrino-induced showers develop negative charge excesses
- Wavelengths the size of the bunch (~10cm) add coherently \rightarrow broadband (200 MHz-1.2GHz) radio pulse
- Conical emission (~56° in ice); strongest "on cone"
- Two requirements for successful experiment
 - Radio transparent medium: ice
 - Enormous volume: Antarctica

The ARA Concept

- 8 VPol & 8 HPol antennas deployed in 200m "boreholes"
- Cubical lattice at 200m depth
- 150-850 MHz bandwidth

USA

Cal Poly	University of Kansas
The Ohio State University	University of Maryland
Otterbein University	University of Nebraska
University of Chicago	University of Wisconsin-Madison
University of Delaware	Whittier College

International Collaborators

Chiba University National Taiwan University University College London Vrije Universiteit Brussel Weizmann Institue of Science

Triggering and Data

- Power: 10ns integrated power > 5.3 × thermal noise floor
- Coincidence: trigger in 3/8 antennas of same polarization in ~170 ns
- Thresholds maintain a global ~7 Hz/station trigger rate $\rightarrow 10^8$ evts/year/station

The Quest for UHE Neutrinos

7

New Stations

- Entire DAQ for A4 and A5 built at OSU, with lots of undergraduate help
- Built "north" system: A6
- Supported the construction of a new low threshold-phased array system [10.1016/j.nima.2019.01.067]
 - A5 serves as the "power and communications" hub
- Refurbished DAQs for A1 and A3

A4 April 2017

Many thanks to CCAPP and CART!

RF circuit board mill.

Rapid prototyping and testing of

electronics

Pick & Place machine for rapid assembly.

Large thermal chamber.

Anechoic chamber.

What's New

ARA Smart Power System (ASPS)

- Power broker enables granular control of subsystems
 - No IceCube intervention in ARA power systems
 - Only 5 station-wide "hard" restarts
- Precision Time Protocol—could sync ARA to IceCube clock

ARA Front End (ARAFE)

- Cheaper, more compact signal conditioning modules
- Contains bank of tunable attenuators to increase dynamic range of instrument
 - EX: prevent saturation of digitizers

July 16 2019

Adapted from [P. Allison et. al. j.astropartphys.2011.11.010]

C

500

Top 1.5 km:

Tunable Attenuators: Application

• With *non*-saturated digitizers, pulse amplitude at A4 vs A5 gives the longest horizontalbaseline measurement of L_{α}

- Presenting expansion to 2013-2016 data set in A2 (A3 underway also)
- Analysis is done "boxed"—tune cuts on 10% of data, remaining 90% sets the limit
- Data is split into five configurations
- Big data
 - 58 million events in 10% sample
 - Nearly 40 TB of data in 100% sample

Run and Livetime Rejection

- Reject *runs* with known calibration activity e.g., surface pulsing and visibly identifiable a anthropogenic activity
- We analyze ~98% of our total recorded livetime; substantial improvement over Testbed (~62%)

Config	Total Livetime (days)	Good Livetime (days)	Fraction
1	185.08	179.62	97%
2	143.58	143.57	99%
3	100.07	94.45	94%
4	413.01	409.86	99%
5	265.73	263.76	99%

Run 6507 HPol Reconstructions Theta Vs Time

THE OHIO STATE UNIVERSITY

Wavefront-RMS Filter

- ARA records >10⁸ events/yearneed fast rejection algorithm
- Leverage regular geometry and divide station into *faces*
- Expect wavefront-RMS = log₁₀(RMS(cosθ)) to be small for real signals, and larger for thermal noise

$$\cos(\theta_{A,i}) \approx \cos(\theta_{A,ii})$$

~ A

Α

$$\overline{\cos(\theta_A)} = \frac{\cos(\theta_{A,i}) + \cos(\theta_{A,ii})}{2}$$
$$RMS(\cos(\theta_A)) = \sqrt{\frac{\left(\cos(\theta_{A,i}) - \overline{\cos(\theta_A)}\right)^2 + \left(\cos(\theta_{A,ii}) - \overline{\cos(\theta_A)}\right)^2}{2}}$$

Wavefront-RMS Filter

• Cut an event if wavefront-RMS > -1.3 for VPol or >-1.4 for Hpol

Config	V Efficiency (%)	H Efficiency (%)	H or V Efficiency (%)
1	74.7	58.0	89.8
2	69.8	48.1	85.2
3	75.6	58.1	91.1
4	75.0	58.7	90.4
5	76.4	59.4	91.7

Continuous Wave (CW) Contamination

- Events passing wavefront-RMS event filter are evaluated for CW contamination
- Most common: 403 MHz from South Pole weather balloons, launched twice-daily

The Quest for UHE Neutrinos

Example Calibration Pulser Event

Perform interferometric reconstruction

- Sky point (θ, ϕ) defines a delay τ
- Compute correlation $C_{i,j}$ between two antennas for that τ

$$C_{i,j}(\tau) = \frac{SNR_i \times SNR_j \times \sum_{t=-\infty}^{\infty} V_i(t)V_j(t+\tau)}{N_{overlap} \times RMS_i \times RMS_j}$$

- Sum over pairs of antennas

$$C_{sky}(\theta,\phi;R) = \frac{1}{\sum_{i=1}^{n_{ant}-1} \sum_{j=i+1}^{n_{ant}} SNR_i \times SNR_j} \sum_{i=1}^{n_{ant}-1} \sum_{j=i+1}^{n_{ant}} C_{i,j}[\tau(\theta,\phi;R)]$$

• Cut events that reconstruct to surface or in direction of pulser

July 16 2019

Final Cut

• Final cut of the analysis is a slanted-line; slope (*m*) and y-intercept (*d*) are optimized to set the best limit

Efficiency

- Between 2 and 4 times more efficient than Testbed analysis
- Competitive with that of previous A23 analysis

Expected Limit

- Expect to observe 0.085 neutrinos from Kotera max flux
- Background of $1.04 \times 10^{-2} {}^{+0.29}_{-0.36}$ in VPol and $1.57 \times 10^{-2} {}^{+0.26}_{-0.29}$ in Hpol

Projected ARA sensitivity carves out exciting new parameter space, w/ real chance at a detection!

Summary

- 1. ARA has an expanded array with more *in-situ* control than ever before
- 2. Station 2 analysis is nearly complete, with A3 analysis close behind
- 3. Projections for ARA show us closing in on world leading limits and the real chance for a discovery of a UHE neutrino

The OSU ARA Team is generously supported by:

- NSF GRFP Award DGE-1343012
- NSF Awards 1255557, 1806923, 1404212

Back-up Slides

B

B

Swordy Plot

Two varieties of interactions: Charged current (CC) and Neutral Current (NC)

CC: $\nu_{\ell} + N \rightarrow \ell + X$ NC: $\nu + N \rightarrow \nu + X$ $\ell \to EM$ Shower

 $X \rightarrow Hadronic Shower$

- Showers are ultra-relativistic ($\beta \approx 1$) \rightarrow emit Cherenkov radiation in dense media
- Intensity is greatest at Cherenkov angle θ_{C}
- Two varieties of interest: optical and radio

Askaryan Pulse Shape and Dependencies

$$V(f) \propto \frac{yE_{\nu}}{R} \times \frac{f}{1150 \text{MHz}} \times \exp\left[-\frac{1}{2}\left(\frac{f}{1 \text{ GHz}} \times \frac{\Omega}{2.2^{\circ}}\right)^2\right]$$

B

ARA Antennas

ß

6 in Birdcage bicone in sand August 2010

THE OHIO STATE UNIVERSITY

New Power Distribution

- Introduced power broker: the ARA Smart Power system (ASPS)
- Old power systems had no granularity
 - A short anywhere compromised the entire station
 - Power cycling subsystems required power cycling whole station—not ideal
- Granularity is powerful—since deployment:
 - No IceCube winter-over intervention in ARA power systems
 - Only 5 station-wide "hard" restarts

- Happy opportunity: new power broker is equipped with Precision Time Protocol
- In the future, could synchronize ARA station clocks to lceCube at the ~ns level, and do optical/RF coincidence searches*

* = part of postdoc plan at MSU w/ IceCube....

The Quest for UHE Neutrinos

New Signal Conditioning

- Old stations have static, physically fragile, and expensive (~\$2k/chan) signal conditioning
- New modules, ARAFE, are cheaper (~\$300/chan) and have per-channel tunable attenuators
 - Enables *in-situ* gain matching between channels (currently un-utilized)
 - Allows for "high attenuation" data taking periods

2: Test on Natural Phenomenon **Observation of Reconstructable Radio Emission from Solar Flare**

"Observation of Reconstructabe Radio Emission in Coincidence with an X-Class Solar Flare in the Askaryan Radio Array Prototype Station"

arXiv 1807.03335

- Testbed activated in February 2011, detected Feb 15 X-2.2 Solar Flare
- Saturates the triggering system
- Observed as excess emission from 100-500 MHz

The Quest for UHE Neutrinos

- Recorded events point back to the sun for the hour duration of the flare
- First radiation for ARA which reconstructs to extraterrestrial source on event-by-event basis
 - Excellent test of projection onto celestial coordinate system
 - Will help calibrate pointing of other above-ice radio sources, e.g., cosmic rays

VPol Interferometric Map, 2:05 GMT

The Ohio State University

 All antennas observe same noise that was generated at the sun and traveled to earth g

 Events only track sun when they are well described by thermal noise

B

Full List of Exluded Runs in A2

- Reject any period of livetime with known/logged calibration activity
 - 2014 Surface Pulsing: runs 2284-2918, 2938-9
 - 2014 ICL Rooftop Pulsing: runs 3120, 3242
 - 2014 Cal Pulser Sweep: 3139-3162, 3164-3187, 3289-3312
 - 2014 L2 Scaler Mask Study: 3464-3504
 - 2014 Trigger Window Scan: 3578-3598
 - 2015 ICL Deep Pulsing: 4785, 4787, 4795-4800
 - 2015 Cal Pulser Noise Tests: 4820-5, 4850-4, 4879-4936, 5210-5277
 - 2015 Surface Pulsing: 4872-3,6
 - 2015 A2 Pulser Lift: 6513
 - 2015 ICL Rooftop Pulsing: 6527
 - 2016 Cal Pulser Sweep: 7625-7686

• Data is split into five configurations

Config	L1 Trig Mask	Readout Window (ns)	Trigger Window (ns)	Trigger Delays	Livetime (days)
1	None	400	110	yes	185.08
2	None	400	110	no	143.58
3	D4BH	400	110	yes	100.07
4	D4BH	520	170	yes	413.01
5	D4BH	520	170	no	265.73

- Data must be conditioned
 - First block must be removed, and remaining blocks given zero mean
 - In A3, channels 3, 8, and 11 require waveform inversion
- I implemented in a standard way: AraEventConditioner

THE OHIO STATE UNIVERSITY

Wavefront-RMS Filter

- ARA records 10⁸ events/year, which are >99% noise
- Need fast rejection algorithm
- Leverage regular geometrydivide station into *faces*
- Compute "hit-times" for signal arrival at each antenna in the face, convert into arrival angle

= A-type pairs

$$\Delta t_{A,i} = t_3 - t_1 \qquad \cos(\theta_{A,i}) \approx \cos(\theta_{A,ii})$$
$$\Delta t_{A,ii} = t_4 - t_2 \qquad \uparrow$$
$$\Delta t_{A,i} \approx \Delta t_{A,ii} \longrightarrow \theta_{A,i} \approx \theta_{A,ii}$$

The Quest for UHE Neutrinos

Wavefront-RMS Filter

• Find the RMS around the average arrival angle

$$\overline{\cos(\theta_A)} = \frac{\cos(\theta_{A,i}) + \cos(\theta_{A,ii})}{2}$$

$$RMS(\cos(\theta_A)) = \sqrt{\frac{\left(\cos(\theta_{A,i}) - \overline{\cos(\theta_A)}\right)^2 + \left(\cos(\theta_{A,ii}) - \overline{\cos(\theta_A)}\right)^2}{2}}$$

• Expect wavefront-RMS = $log_{10}(RMS(cos\theta))$ to be small for real signals, and larger for thermal noise

• Performance on VPol data and simulation from A2 configuration 1

8

- Cut an event if wavefront-RMS > -1.3 for VPol or >-1.4 for Hpol
- These values reduce data to 5-10% of original size (per polarization) while keeping fraction of neutrino events cut by wavefront-RMS *alone* to <5%
- Total efficiency of the filter for neutrinos, before other cuts, is ~90%

Config	V Passing Rate	H Passing Rate	H or V Passing Rate
1	74.7	58.0	89.8
2	69.8	48.1	85.2
3	75.6	58.1	91.1
4	75.0	58.7	90.4
5	76.4	59.4	91.7

Wavefront-RMS Filter

• Efficiency of filter can be measured as a function of the signal-to-noise ratio

CW Filtering

- Flag a frequency as CW if it comes from "peaks above base line" or "phase variance"
 - Phase variance frequently flags 125, 300 and 500 MHz as systems noise—we ignore these
 - Adjacent frequencies merged into notches
- CW frequencies are filtered with ANITA Geometric Filter—first time we have filtered waveforms in ARA
 - Originally designed by Brian Dailey at OSU
 - Used in the ANITA-III analysis [Phys. Rev. D 98, 022001 (2018)]

Reconstruction Details

- Interferometry based reconstruction:
 - Putative source angle \rightarrow Time Delay between antennas \rightarrow Correlation Value
 - Take Hilbert envelope to interpret as power

ASKARYAN RADIO ARRAY

+ ...

Interferometry (cont.)

- For pair of antennas, compute time delays and correlation values for all points on the sky
 - Propose a source distance, $\theta,$ and φ
 - Trace ray from source to array center
- Sum up correlation value for many pairs of antennas
- Interpret peak in map as source direction

1. P. Allison *et. al.* j.astropartphys.2015.04.006 2. P. Allison *et. al.* j.astropartphys.2016.12.003

July 16 2019

- Phi Anisotropy
- In A2 and A3, one cable was too long
 - A2 String 3
 - A3 String 2
- In both stations, that string has an extra 100ns of cable delay
- E.g., in A2, string 3 waveforms start earlier than in the other strings (eg. string 2)

Phi Anisotropy

- When signal present—signal dominates correlation function
- When noise dominates (most cases), the extra trace length at the beginning means the longer string systematically looks like it lags the other strings
- This pulls the reconstruction in the direction of the longer string
- Which is ~111° in A2 and ~21° in A3

Theta Anisotropy

- The top and bottom antennas are separated by ~19m of cable, in which light travels 0.255m/ns, amounting to ~75 ns of delay between the two
- Take A2 D1TV and D1BV as an example
 - Known geometric distance between antennas=19.26 m
 - If $\Delta t=75$ ns
 - Then the reconstructed zenith is -41°!

- Is this "phantom" 75ns observed in practice? Yes!
- Source unclear:
 - Low level cross-talk?

Theta Anisotropy

Slide from MYL

B

- Finally, by allowing an event to pass in VPol or HPol, we can compute the efficiency as a function of energy
- Example of A2 config 1: ~30% near 10^{17} eV climbing to ~60% near 10^{19} eV

A2 Configuration 1 Efficiency

Total Analysis Efficiencies

• Total efficiency of the analysis

Config	V Efficiency	H Efficiency	Total Efficiency
1	40.2%	33.5%	49.0%
2	32.4%	19.7%	36.8%
3	41.0%	34.5%	50.8%
4	38.2%	31.5%	47.0%
5	38.8%	32.3%	47.7%

ß

B

Background Pseudo-Experiments

New Slope:
$$eta_{1,i}^\prime=eta_{1,i}+\sigma_{eta_1,i}\eta_1$$

New Intercept:
$$\beta_{2,i}' = \beta_{2,i} + \rho_i \sigma_{\beta_2,i} \eta_1 + \sigma_{\beta_2,i} \eta_2 \sqrt{1 - \rho_i^2}$$

N .

- Compute effective volume at trigger level from simulation
- Simulation was altered to take into account trigger delays, masked channels, etc. in a configuration specific way
- Get effective area through division by interaction length

$$A_{eff} = V_{eff} / L_{int}$$

$$V_{eff} = V_{thrown} \frac{N_{det}}{N_{thrown}}$$

Energy [eV]

- Assume non-observation in the 100% sample
- Compute 90% UL on the maximum size the flux, *EF*(*E*), can be in an energy bin *E_i*

$$EF(E)_i = \frac{2.44}{\ln 10 \, d \log_{10} E_i \, T \, [A\Omega]_{eff}}$$

- There are discrepancies between our effective volumes and those quoted in previous studies
- The discrepancy is under study

