

Latest Updates in the Search for Ultra-High Energy Neutrinos with the Askaryan Radio Array

Brian Clark

The Ohio State University

Department of Physics and the Center for Cosmology and Astroparticle Physics (CCAPP)

September 28, 2018 Spring OSAPS Meeting—University of Toledo

Why Study EeV Neutrinos?

<u>Astrophysics</u> Probe highest energies at cosmic distances

Cosmic rays $>10^{19.5}$ eV attenuated, e.g.:

$$p + \gamma \rightarrow \Delta^+ \rightarrow p(n) + \pi^0(\pi^+)$$

Gamma rays pair-annihilate (with EBL) above ~1 TeV

Particle Physics

Measure cross sections at >LHC

energies

 10^{18} eV neutrino interacting in ice has COM energy of ~60 TeV

$$E_{COM} = \sqrt{4 \, E_{\nu} \, m_n}$$

28 September 2018

THE OHIO STATE UNIVERSITY

CAPP

Detecting an UHE Neutrino

Rare Signal

- Low fluxes (~10/km³/yr) and low crosssections (interaction length ~300km in rock)
- Need ~100 km³ of target volume to enable detection (e.g., few per year)
- Several Options:
 - Balloon experiments: radio
 - In-Situ experiments: optical, radio
 - Ground based arrays: air shower, radio

Auger (air shower) 324 m

~ 10 cm

 $\langle \theta_{\rm C} = 56^{\circ}$

Radio Cherenkov Effect

How ARA will measure neutrinos

- Neutrino-induced particle showers develop negative charge excesses
- Wavelengths the size of the bunch (~10cm) add coherently
- Get Broadband (200 MHz \rightarrow 1.2GHz) radio *pulse*
- Conical emission (57° in ice); strongest on cone

 $\Delta \theta(\omega)$

Askaryan Radio Array (ARA)

- 16 antennas (8 V-pol, 8 H-pol, 200-850 MHz bandwidth)
- Cubical lattice at 200m depth
- Energy range: $10^{16} \rightarrow 10^{19} \text{ eV}$
- Trigger when 3/8 antennas see something impulsive
- 5 Hz of triggers $\rightarrow 1.6 \times 10^8$ events/year/station!

Current Status of the Instrument

- Under phased construction in the ice near South Pole
- Phase 1 goal is ~37 stations, spaced 2km apart, covering ~100 km² of ice
- Prototype ("Testbed") + 5 (!) stations deployed so far

Data Analysis: Event Filter

- Use regular ARA station geometry to remove events without plane-wave properties
- Large variation in signal arrival directions between cube faces \rightarrow cut event

THE OHIO STATE UNIVERSITY

Signal-to-Noise Ratio

40

35

30

25

20

15

pulsers

FCAPP

Events

w/ weak

1/50th of A2, 4 Year Blind Data Set

Thermal

 10_{\circ} 10_{\circ} 10_{\circ} Number of Events

10²

Data Analysis: Final Cut

- Calibration sources and human contaminated events are removed
- Final cut: line in the plane of signal-to-noise ratio vs waveform cross-correlation \rightarrow chosen to set the strongest possible limit

Estimate of Diffuse Analysis Sensitivity

ARA becomes competitive with Auger/IceCube at high energies.

Phase 1 array should probe even pessimistic cosmogenic models.

Summary

- Neutrinos are key windows to fundamental physics
- The ARA two station limit will begin to be competitive with existing experiments
- Projections for ARA-Phase1 will dig deeply into neutrino models

The Connolly Group and my research is generously supported by:

- NSF GRFP Award DGE-1343012
- NSF CAREER Award 1255557
- NSF Grant 1404266 and NSF BigData Grant 1250720
- The Ohio Supercomputer Center
- The OSU Department of Physics and Astronomy
- The OSU Center for Cosmology and Astroparticle Physics
- US-Israel Binational Science Foundation Grant 2012077

Back-up Slides

Astrophysical Messengers

Two Sources of Neutrinos

- Predicted "BZ Flux": pions from GZK process decay into neutrinos
- "Source Flux": Neutrinos from the CR accelerators
 - Gamma Ray Bursts (GRB)
 - Active Galactic Nuclei (AGN)

Neutrinos have attractive properties

- Weakly interacting: travel cosmic distances unattenuated
- Chargeless: not deflected by (inter) galactic magnetic field
 → point back to source!

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}} + \nu_{\mu}$$

Neutrino Interactions

• Two varieties of interactions: Charged current (CC) and Neutral Current (NC)

 $CC: \nu_{\ell} + N \to \ell + X$ $\ell \to EM Shower$

NC: $v + N \rightarrow v + X$ X \rightarrow Hadronic Shower

- Showers are ultra-relativistic ($\beta \approx 1$) \rightarrow emit Cherenkov radiation in dense dielectric media (i.e., water, ice)
- Intensity is greatest at Cherenkov angle θ_C
- Two varieties of interest: optical (IceCube) and radio (ARA/ANITA)

$$\cos\theta_C = \frac{1}{n\beta}$$

Alternate Station Schematic

28 September 2018

THE OHIO STATE UNIVERSITY

USA:

Ohio State University Cal Poly University of Chicago University of Delaware University of Kansas University of Maryland University of Nebraska University of Wisconsin – Madison

ARA is an International

Collaboration

UK:	University College London
Belgium:	Université Libre de Bruxelles
Japan:	Chiba University
Taiwan:	National Taiwan University
Israel:	Weizmann Institute of Science

28 September 2018

Interferometric Maps

- Timing information \rightarrow geometry information
- Punitive source angle \rightarrow Time Delay \rightarrow Correlation Value for that delay
- Take Hilbert envelope to interpret as *power*

Interferometric Maps

- Punitive source angle \rightarrow Time Delay \rightarrow Correlation Value for that delay
- Plot that correlation value for all points on the sky, for all pairs of antennas

