



# <u>The Askaryan Radio Array:</u> Detector Status and Directional Reconstruction in Neutrino Point-Source Searches

# **Brian Clark for the ARA Collaboration**

# The Ohio State University Department of Physics and CCAPP

May 22, 2018

CCAPP Seminar, The Ohio State University—Columbus, OH







# **Neutrinos and ARA**

22 May 2018







# Why UHE Study Neutrinos?



UHE means 10<sup>16</sup> eV and above

Astrophysical Motivation: Only probes of the highest energies at cosmic distances

- Cosmic rays >10<sup>19.5</sup> eV attenuated by GZK effect
- Gamma rays >~1 TeV pairannihilate on CMB/EBL

Particle Physics Motivation: Probe cross sections at energies above accelerators

 An EeV (10<sup>18</sup> eV) neutrino in ice = COM energy of ~45 TeV

22 May 2018





# **Detection through the Askaryan Effect**

- Neutrino interaction in dense media creates shower of charged particles
- ~20% more electrons than positrons —"bunch" of particles moving through media and radiating
- Wavelengths the size of the bunch (~cm) add coherently, producing broadband (200 MHz → 1GHz) impulsive <u>radio signal</u>
- Conical emission, strongest signal "on cone"
- Two requirements for successful experiment
  - Radio transparent medium: ice
  - Enormous volume: Antarctica









USA:

Cal Poly The Ohio State University University of Chicago University of Delaware University of Kansas University of Maryland University of Nebraska University of Wisconsin – Madison

# **ARA** is an International

# **Collaboration**

| UK:     | University College London     |  |  |
|---------|-------------------------------|--|--|
| Japan:  | Chiba University              |  |  |
| Taiwan: | National Taiwan University    |  |  |
| Israel: | Weizmann Institute of Science |  |  |

22 May 2018

**ARA: Status and New Directional Reconstruction Techniques** 

**FCAPP** 







# **Content of an ARA Station**

- Antenna array looking for Askaryan emission from neutrinos
- 16 antennas (8 Vpol, 8 Hpol, 200-850 MHz bandwidth)
- Cubical lattice at 200m depth
- Energy range:  $10^{16} \rightarrow 10^{19} \text{ eV}$





VPol HPol Antenna Antenna







## **Current Status of the Instrument**

- Under phased construction in the ice near South Pole
- Phase 1 goal is ~37 stations, spaced 2km apart, covering ~100 km<sup>2</sup> of ice
- Prototype ("Testbed") + 5 (!) stations deployed so far





# ARA Trigger and Data

- Power: 10ns integrated power > 5.3 × thermal noise floor
- Coincidence: trigger in 3/8 antennas of same polarization in ~110 ns
- Thresholds maintain a global ~7 Hz/sta trigger rate  $\rightarrow 10^8$  evts/year/st







**FCAPP** 

**ARA: Status and New Directional Reconstruction Techniques** 

The Ohio State University







# **What's New**

22 May 2018







# **New Stations**

- ARA deployed two new stations (A4, A5) in January 2018
- Robustly tested: run, fully assembled, for >1 mo in the north @ UW PSL

Power Broker

- DAQ runs ~4 days at -40 C in thermal chamber at OSU CCAPP Antarctic RF Test Facility
- All are equipped with new, exciting electronics
  - A power-broker to improve system monitoring and control
  - Cheaper, more compact, and more flexible signal conditioning





ARA4 DAQ Box

22 May 2018



#### THE OHIO STATE UNIVERSITY



# New Phased Array w/ A5

- ARA5 is equipped with a new *phased array* trigger (led by A. Vieregg @ UChicago)
- 7 VPol antennas deployed down single hole in the middle of A5
- Beamform before triggering  $\rightarrow$  higher sensitivity
- Because for fixed trigger rate, threshold  $\propto \sqrt{N}$













### **Phased Array Performance Comparison**



Preliminary: PA measurement demonstrates factor ~1.8 reduction in 50% efficiency point (expected ~2.6).







A. Vieregg et al.,



- Phased array enhances neutrino sensitivity and lowers energy threshold to ~10 PeV
- Cross-check IceCube flux
- Resolve whether IceCube is seeing a spectral cutoff



|                             | Station Configuration | Power Law | Power Law   | Optimistic | Pessimistic |
|-----------------------------|-----------------------|-----------|-------------|------------|-------------|
| 10 stations,                |                       |           | with Cutoff | Cosmogenic | Cosmogenic  |
| 3 years                     | 16-antenna            | 0.9       | 0.0         | 7.7        | 2.3         |
| livetime 16-antenna, phased |                       | 3.8       | 0.1         | 19.6       | 6.0         |
|                             | 400-antenna, phased   | 18.4      | 2.2         | 52.9       | 15.6        |





The Ohio State University



### **Diffuse Analysis Status**



Two station, four year diffuse search in the works; Led By Carl Pfender (OSU).

ARA becomes competitive with Auger/IceCube at high energies.

Phase 1 array should probe even pessimistic cosmogenic models.





### ССАРР

#### Solar Flare in the Testbed Prototype VPol Interferometric Map. 2:05 GMT

- Testbed activated in February 2011, detected Feb 15 X-2.2 Solar Flare
- The V-Pol RF reconstruction peak tracks the sun across the sky (with some systematic offsets under study)
- Powerful calibration source: can confirm coordinate projection onto celestial sphere
- First reconstructable emission of extraterrestrial origin to trigger ARA — paper with details soon



22 May 2018







# **Pointing and GRBs**

22 May 2018



#### THE OHIO STATE UNIVERSITY



# **Motivation**



### Idea: reduce analysis thresholds for neutrino source searches

- A standard, diffuse searches require the strictest cuts
  - Neutrinos can come from "anywhere, anytime"
    - $\rightarrow$  RF background can come from "anywhere, anytime"
- In a transient search, straightforward way to lossen cuts: restricted timing
  - ANITA-II searched for *prompt* neutrinos from GRBs [A. Vieregg et. al. ApJ 736 (2011) 50] 10-minute signal window, 12 GRBs in the sample

22 May 2018

- Example: afterglow neutrino fluxes > prompt fluxes above ~10<sup>17.5</sup> eV, where ANITA is more sensitive
- Which is challenging, because afterglows require larger signal windows:
  - Prompt neutrino search: ~10 min signal window [A. Vieregg et. al ApJ 736 (2011) 50, P. Allison et. al. Astropart.Phys. 88 (2017) 7-16]
  - Afterglow neutrino search: >2-3
     hrs signal window [K. Murase et. al. PRD 76 (2007) 123001, J. Thomas et. al. arXiv 1710.04025]
- So, need another way to reduce thresholds...













# The Goal

# Develop techniques to cut on the *direction* of an RF source

- Need another way to reduce thresholds... RF source direction is the natural next thing
- For a transient search: cut on timing and direction
  - Enables wider timing windows
- For steady-source search: cut on direction only



Oindree Banerjee working on afterglow neutrino search in ANITA-III

22 May 2018







# Prediction for Improvement

- Case study: exponential background model
  - Used in:
    ARA diffuse search
    ARA GRB search
    ANITA-III diffuse search
- Models background with an exponential
  - Plot is distribution of the final cut parameter in the data
  - Line is exponential fit to the data:

$$\frac{dN}{dx} = ae^{-bx}$$

 Background estimate: integrate model from cut value x<sub>i</sub> to infinity



$$N_{\text{back},i} = \int_{x_i}^{\infty} ae^{-bx} \, dx = \frac{a}{b}e^{-bx_i}$$





# **Prediction for Improvement (cont.)**

- For a search, have:
  - Background prediction: N<sub>back</sub>
  - Neutrino efficiency:  $N_{\text{pass}}/N_{\text{predicted}}$
- Question: with a cut on timing/direction, and a fixed  $N_{back}$ , how much can we loosen our final cut parameter?
- Suppose we reduce the number of events after directional restriction by a factor  $\alpha > 0$ :  $a_{new} = a_{old}/\alpha$
- We can predict the reduction in threshold:  $x_{old} - x_{new} = \frac{\ln \alpha}{h}$







# Prediction for Improvement (cont.)

What  $\alpha$  might be possible?

- Example:
  - Simulate flux of 10<sup>18</sup> eV neutrinos
  - Do interferometry on every (w/ 300 m source distance hypothesis)
- Given this:
  - Might expect  $\alpha \sim \frac{20,000 \text{ deg}^2}{1,600 \text{ deg}^2} \sim 12$
  - Which is is a reduction:  $x_{\rm old} - x_{\rm new} \sim 0.5$
- Don't forget: signal events are steeply falling distributions of x<sub>i</sub>.
   Small reductions in x<sub>i</sub> significantly affect neutrino acceptance.



22 May 2018





# **Ongoing Work**

- Systematic Uncertainties on Reconstruction Algorithms
  - Ice modeling: what is n(z)
  - Geometry calibrations
- Need a way to determine where on the Cherenkov cone a candidate signal might be
  - Can look at VPol vs HPol signal strength (polarization)
  - And frequency information (spectral slope, etc.)
  - Both will require a more complete understanding of antenna response







# Application to new ARA GRB Study

- Utilize IceCube catalog for all GRBs occurring in the four year (2013-16) two-station (A2, A3) livetime currently undergoing a diffuse analysis
- Require events be in the ARA field-of-view:  $-5^{\circ} \rightarrow 45^{\circ}$  in elevation
- Sample has 391 GRBs (without accounting for system livetime)







# **Summary**

- Neutrinos are a key messenger to the distant, high energy universe
- ARA has two new stations with more *in-situ* control than every before, enhancing detector operational efficiency.
- Phased array prototype on A5 demonstrates improved sensitivity and the power of phased triggering
- Restricting on direction of an RF source should enable reduced thresholds in point source searches.



United States – Israel Binational Science Foundation



### The Connolly Group at OSU and ARA is generously supported by:

- NSF GRFP Award DGE-1343012
- NSF CAREER Award 1255557
- NSF Grant 1404266 and NSF BigData Grant 1250720
- The Ohio Supercomputer Center
- The OSU Department of Physics and Astronomy
- The OSU Center for Cosmology and Astroparticle Physics
- US-Israel Binational Science Foundation Grant 2012077