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Why Neutrinos?
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Why Study Neutrinos: Astrophysical Messengers
• Cosmic rays >1019.5 eV attenuated, 

possibly by GZK effect, e.g.

𝑝 + 𝛾 → ∆&→ 𝑝 𝑛 + 𝜋) 𝜋&

→ Screens extragalactic (>100 MPc)
sources

• 𝛾-rays annihilate w/ CMB @ ~1 TeV
𝛾-rays

cosmic-rays

neutrinos
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Plot by A. Connolly,
Adapted from S. Swordy
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Astrophysical Messengers
Two Sources of Neutrinos
• Predicted “BZ Flux”: pions from 

GZK process decay into neutrinos
• “Source Flux”: Neutrinos from the 

CR accelerators
– Gamma Ray Bursts (GRB)
– Active Galactic Nuclei (AGN)

Neutrinos have attractive properties
• Weakly interacting: travel cosmic 

distances unattenuated
• Chargeless: not deflected by 

(inter) galactic magnetic field 
→ point back to source!

6

AGN Centaurus A. 
(ESO public image release)
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𝜋& → 𝜇& + 𝜈,
→ 𝑒& + 𝜈. + �̅�, + 𝜈,
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Cosmic Neutrinos
They Exist!
• 2012: IceCube experiment sees 

PeV neutrinos of cosmic origin
• Today’s discussion: neutrinos x103

more energetic—the “UHE” regime

8

LUNASKA (Radio)
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Bert (‘12)
1.0 PeV

Ernie (‘12)
1.1 PeV

Unnamed
(‘16) L
2.6 PeV

Big Bird( ‘14) 
2.2 PeV
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Why Study Neutrinos: Particle Physics Probes
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• Probe cross-sections at energies above accelerators

• Ex: An EeV (1018 eV ) neutrino interacting in ice has COM 
energy of ~60 TeV (note: LHC  14 TeV)

𝐸123 = 4	𝐸7	𝑚9
�

COM = Center of Momentum
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Neutrino Interactions
• Two varieties of interactions: Charged current (CC) and Neutral 

Current (NC)

CC: 𝜈ℓ + 𝑁 → ℓ + 𝑋 NC: ν + 𝑁 → 𝜈 + 𝑋
ℓ → 𝐸𝑀	𝑆ℎ𝑜𝑤𝑒𝑟 				𝑋 → 𝐻𝑎𝑑𝑟𝑜𝑛𝑖𝑐	𝑆ℎ𝑜𝑤𝑒𝑟

• Showers are ultra-relativistic (𝛽 ≈ 1)→ emit Cherenkov radiation
• Intensity is greatest at Cherenkov angle 𝜃1
• Two varieties of interest: optical (IceCube) and radio (ARA/ANITA)

10

cos 𝜃1 =
1
𝑛𝛽
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Radio Cherenkov Effect
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• Showers develop negative charge excesses
• Wavelengths the size of the bunch (~10cm) 

add coherently
• Broadband  (200 MHz → 1.2GHz) radio pulse
• Conical emission (57°in ice)

J. Alvarez-
Muñoz & E. 
Zas (2005)

Sim E-Field, 1PeV Shower, “On Cone”
Arxiv 1002:3873

Sim E-Field, 1PeV Shower, “Off-Cone”
Arxiv 1002:3873
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Observation of Askaryan Effect

12

Has been experimentally observed in ice and salt
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P. Gorham et al.
PRL 99, 171101 (2007) D. Satlzberg et al.

PRL 86, 13 (2001)
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Current Experiments
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Detecting an UHE Neutrino

• Low fluxes (~10/km3/yr) and low 
cross-sections (interaction length 
~300km in rock)

• Need ~100 km3 of target volume 
to enable detection (e.g., dozens 
per year)

14

ANITA-III  (radio)

Auger
(air shower)

IceCube (optical)

LUNASKA 
(radio)
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• Several Options:
– Balloon experiments: radio
– Ground based arrays: air shower, radio
– In-Situ experiments: optical, radio 
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ANtarctic Impulsive Transient Antenna (ANITA)
• ~40 dual polarized antennas (100-1200 MHz 

bandwidth)
• Flown by NASA balloon; altitude 40 km
• Observes 106 km2 of ice
• Energy range: 1018 → 1021+ eV
• 3 flights so far, ANITA-4 this winter!!

154 October 2016

Figure credit: O. Banerjee

High energy 
threshold, but 
huge effective 
volume
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USA:
Ohio State University
Cal Poly
University of California Los Angeles
University of Chicago
University of Delaware
University of Kansas
University of Hawaii
Washington University in St. Louis

UK:  University College London
Taiwan: National Taiwan University

ANITA Collaboration

Jerrod Roberts, Univ of HI
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Askaryan Radio Array (ARA)

22

• 16 antennas (8 vpol, 8 hpol, 
200-850 MHz bandwidth )

• Cubical lattice at 200m depth
• Energy range: 1016 → 1019 eV

Calibration Pulsers

200 m

Bottom
V-pol

Bottom
H-pol

Top
V-pol

Top
H-pol

2 m

15 m

30 m

2 m

V-Pol
Antenna

H-Pol
Antenna
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USA:
Ohio State University
Cal Poly
University of Chicago
University of Delaware
University of Kansas
University of Maryland
University of Nebraska
University of Wisconsin – Madison

UK:  University College London
Belgium: Université Libre de Bruxelles
Japan: Chiba University
Taiwan: National Taiwan University
Israel: Weizmann Institute of Science

ARA is an International 
Collaboration

Figure credit: C. Pfendner
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Rapid prototyping 
and testing of 
electronics

RF circuit board mill.

Pick & Place machine 
for rapid assembly.

Large thermal chamber.

Large RF/ 
anechoic chamber.
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2 km

Deployed ARA 
Station

IceCube

3 1

2

Skiway

South Pole 
Station

South 
Pole

5

6

4

Instrumentation 
deployment in 17 / 18. 
Site / road preparation 
in 16 / 17.

Potential if support 
is available

WT3

ARA Current Status
• Under phased construction in the ice near South Pole
• Prototype (“Testbed”) + 3 stations deployed so far
• Two more stations in 2017!

Testbed

Low energy 
threshold, sparse 
instrumentation.
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ARA Long Term Plans
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Full array, 
ARA37, will cover 
~100 km2 ice
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Backgrounds to Signal
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• Radio blackbody (thermal) emission of ice
• CW wave (CW) sources: satellites, radios, human bases..
• Electromagnetic interferneces: lights, static discharge

4 October 2016
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Signal Identification: In Hardware
Impulsive 
• Power Trigger: integrated power over ~10ns 

must be > threshold
• Effective at identifying neutrinos: pulses have 

large integrated power

Coincidence
• Coincident requirement: trigger in 3/8 

antennas
• Good at rejecting thermal noise: noise 

“rarely” fluctuate high in 3/8 simultaneously

284 October 2016

Calibration Pulser Event
Testbed Station

Power
Integration

Threshold
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Signal Identification: In Software

Signal Must be Broad in Frequency
• Impulsive signals are broadband 
• Anthropogenic backgrounds are usually narrow band (people 

talking on radio, for example)

29

Calibration Pulser Event
Testbed Station
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Interferometric Maps: Directional Reconstruction
• Timing information → geometry information
• Punitive source angle → Time Delay → Correlation Value for that delay
• Take Hilbert envelope to interpret as power

𝜃R = arcsin
𝑐	Δ𝑡
𝐷

Antenna 2 Waveform
Antenna 3 Waveform

Antenna 2 & 3
Waveform 

Correlation

Antenna 2 & 3
Waveform 

Correlation
Hilbert

Envelope
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...

Map from pair 1 Map from pair 2 Map from pair 3

0

90

-90
0-180 180

0.35

0

Interferometric Maps
• Punitive source angle → Time Delay → Correlation Value for that delay
• Plot that correlation value for all points on the sky, for all pairs of 

antennas

Peak in final 
map gives 

source 
direction
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Figures by E. Hong
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Analyses and Results
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1. Search for diffuse neutrinos
2. Search for point sources

UHE Radio Neutrino Astrophysics—Brian Clark (clark.2668@osu.edu)



Searching for Diffuse Neutrinos
Interferometry
• Ask for unique, well defined peaks:  rejects >95% of thermal noise
• Reject all events from human campsites or that have repeating RF 

direction
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Searching for Diffuse Neutrinos
Interferometry
• Ask for unique, well defined peaks:  rejects >95% of thermal noise
• Reject all events from human campsites or that have repeating RF 

direction
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Searching for Diffuse Neutrinos
Signal Strength
• Combination cut on signal and correlation strength
• Tune cuts on 10% of data
• Choose cut line for best expected flux limit
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Figures by C. Pfendner
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Searching for Diffuse Neutrinos
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P. Allison et al for the ARA Collaboration
Astropart Phys, Vol 70 (2015).

• Expected background: 0.06, 
Expected neutrinos: 0.02, 
0 Events survived cuts

• Limits on diffuse neutrino 
flux from 415 days of ARA 
Testbed.

• Predictions for ARA 37 limits 
(red line) are competitive and 
capable of model 
discrimination.
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Limits on diffuse 
neutrino flux from 10 
months of two 
stations.

Predictions for ARA 
37 limits (red line) 
are competitive and 
capable of model 
discrimination.

Two Stations Diffuse Limit

P. Allison et al, for the ARA Collaboration.
Phys. Rev. D 93, 082003 (2016).
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Two Stations Diffuse Limit

Projected event numbers for 
three models of the UHE 
neutrino flux with 37 
stations and 3 years 
livetime.

Power to discriminate 
between models after 3 
years livetime.

P. Allison et al, for the ARA Collaboration.
Phys. Rev. D 93, 082003 (2016).
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Searching for Neutrinos from GRBs
• Some (untested) models for GRBs require the emission of neutrinos
• Testbed was live and has good data for 57 GRBs

4 October 2016 39

NASA Swift Telescope Diagram

Afterglow 
Neutrinos? (~1018 eV)

Prompt 
Neutrinos? (~1014 eV)
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Searching for Neutrinos from GRBs
• “Relaxed” diffuse search: GRB allows strict cuts on timing and 

source direction
• Blinded search strategy

– Optimize cuts for best limit, using 10% of background region
– Check in remaining 90% of background region
– Search in the signal period
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• With 10% burned sample

- background time range: +- 1 hour from a GRB with +- 5 min gap

• Total ~67,000 events from 57 selected GRBs’ background analysis 
period from 10% burned data set

• Estimated number of events from 90% data set with optimized cuts 
(for entire 57 GRBs)

- Expected BG events in signal period: 0.106

- Expected BG events in background period: 1.166

- Expected ν events in signal period: 1.47e-05

3

Background Analysis

time

GRB
+1hr-1hr background 

analysis period
(55min)

signal period

+5min-5min

background 
analysis period

(55min)
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Testbed GRB Flux Limit
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P. Allison et al, for the ARA Collaboration.
Arxiv 1507.00100v1

• Expected backround: 0.12, 
Expected neutrinos: 1.7e-5,
0 events survived cuts

• Limits on the GRB flux from 
57 GRBs from 224 days of 
ARA testbed

• First quasi-diffuse flux limit 
above 1016 eV
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Future Plans
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Future Plans: Phased Array
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• Strategy for 
improving sensitivity: 
reduce background 
with signal averaging

• Place a phased 
trigger string 
amongst pointing 
array

• Coherently sum many 
antenna waveforms 
before triggering: 
“beamform”

A. Vieregg et al.
JCAP 2 (2016) 005

𝑆𝑁𝑅 ∝
𝑉]R^9_`
𝑉9aR].

∝
𝑁 
𝑁�
∝ 𝑁�
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Future Plans: Phased Array
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• Higher sensitivity!
• Lower thresholds, higher 

efficiency, larger effective volumes
• Ability to turn off “loud” beams

A. Vieregg et al., JCAP 2 (2016) 005J. Avva et al., Arxiv: 1605: 03525

Funded! Will be 
deployed on 
ARA5 in 2017! 
Led by A. Vieregg
at U Chicago.
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Signal path out

Trigger 
attenuator

High pass filter
18 dB amp

Signal attenuator

22 dB amp

Low pass filter

Signal input

Trigger    
path out

Future Plans: Dynamic Signal Attenuation
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• What’s new
– Microcontrolled

variable attenuators
– Dynamic correction 

to season variation 
in signal chain gain

• Advantages
– Better utilization of 

system dynamic 
range

– No partnered parts 
problems

– Simpler analysis

UHE Radio Neutrino Astrophysics—Brian Clark (clark.2668@osu.edu)



• NSF funded workshop for high school women
• Hands on projects

Perform radio 
interferometry.Analyze ANITA data 

with Mathematica.

Check us out!
u.osu.edu/aspire

Build and program 
microcontroller 
radios.
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Summary

• Neutrinos are key windows to fundamental physics
• Smarter analyses, better electronics, and new designs will 

continue to enhance sensitivity
• The next generation of UHE neutrino observatories will contribute 

greatly to the era of multi-messenger astronomy
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Back-up Slides
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Alternate Station Schematic
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Phased Array Capability

A. Vieregg et al.
JCAP 2 (2016) 005
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