





# <u>Ultra-High Energy Neutrino</u> <u>Astrophysics with Radio Detectors</u>

# **Brian Clark**

The Ohio State University

Department of Physics and the Center for Cosmology and Astroparticle Physics (CCAPP)

October 4, 2016

**Department of Physics Colloquium—The College of Wooster** 

Photo Credit: South Pole Telescope





The Ohio State University



# <u>Ultra-High Energy Neutrino</u> Astrophysics with Radio Detectors

# **Brian Clark**

The Ohio State University

Department of Physics and the Center for Cosmology and Astroparticle Physics (CCAPP)

October 4, 2016

**Department of Physics Colloquium—The College of Wooster** 

Photo Credit: McGill University







- 1. Why neutrinos?
- 2. Current experiments
- 3. Analyses and Results
- 4. Future plans







# **Why Neutrinos?**







#### Why Study Neutrinos: Astrophysical Messengers







#### Astrophysical Messengers Two Sources of Neutrinos

- Predicted "BZ Flux": pions from GZK process decay into neutrinos
- "Source Flux": Neutrinos from the CR accelerators
  - Gamma Ray Bursts (GRB)
  - Active Galactic Nuclei (AGN)

#### Neutrinos have attractive properties

- Weakly interacting: travel cosmic distances unattenuated
- Chargeless: not deflected by (inter) galactic magnetic field
   → point back to source!

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
  
$$\rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}} + \nu_{\mu}$$





4 October 2016





#### **Cosmic Neutrinos**

#### They Exist!

- 2012: IceCube experiment sees
   PeV neutrinos of cosmic origin
- Today's discussion: neutrinos x10<sup>3</sup> more energetic—the "UHE" regime









### Why Study Neutrinos: Particle Physics Probes

- Probe cross-sections at energies above accelerators
- Ex: An EeV (10<sup>18</sup> eV) neutrino interacting in ice has COM energy of ~60 TeV (note: LHC 14 TeV)







#### **Neutrino Interactions**

• Two varieties of interactions: Charged current (CC) and Neutral Current (NC)

 $\begin{array}{l} \text{CC: } \nu_{\ell} + N \to \ell + X \\ \ell \to EM \ Shower \end{array}$ 

NC:  $v + N \rightarrow v + X$ X  $\rightarrow$  Hadronic Shower

- Showers are ultra-relativistic ( $\beta \approx 1$ )  $\rightarrow$  emit Cherenkov radiation
- Intensity is greatest at Cherenkov angle  $\theta_C$
- Two varieties of interest: optical (IceCube) and radio (ARA/ANITA)







#### The Ohio State University



#### **Radio Cherenkov Effect**

- Showers develop negative charge excesses
- Wavelengths the size of the bunch (~10cm) add coherently
- Broadband (200 MHz  $\rightarrow$  1.2GHz) radio pulse
- Conical emission (57° in ice)











#### **Observation of Askaryan Effect**

Has been experimentally observed in ice and salt



4 October 2016







# **Current Experiments**





### **Detecting an UHE Neutrino**

**SKARYAN RADIO ARRAY** 

- Low fluxes (~10/km<sup>3</sup>/yr) and low cross-sections (interaction length ~300km in rock)
- Need ~100 km<sup>3</sup> of target volume to enable detection (e.g., dozens per year)
- Several Options:
  - Balloon experiments: radio
  - Ground based arrays: air shower, radio
  - In-Situ experiments: optical, radio

Auger (air shower)





ANITA-III (radio)

LUNASKA (radio)





#### ССАРР

## **ANtarctic Impulsive Transient Antenna (ANITA)**

- ~40 dual polarized antennas (100-1200 MHz bandwidth)
- Flown by NASA balloon; altitude 40 km
- Observes 10<sup>6</sup> km<sup>2</sup> of ice
- Energy range:  $10^{18} \rightarrow 10^{21+} \text{ eV}$
- 3 flights so far, ANITA-4 this winter!!





High energy threshold, but *huge* effective volume























#### THE OHIO STATE UNIVERSITY









#### The Ohio State University









#### THE OHIO STATE UNIVERSITY









#### The Ohio State University





Ohio State UniversityANIICal PolyUniversity of California Los AngelesUniversity of ChicagoUniversity of ChicagoUniversity of DelawareUK:University of KansasTaiwarUniversity of HawaiiWashington University in St. Louis

UK: University College London

Taiwan: National Taiwan University

4 October 2016







#### Askaryan Radio Array (ARA)

- 16 antennas (8 vpol, 8 hpol, 200-850 MHz bandwidth )
- Cubical lattice at 200m depth
- Energy range:  $10^{16} \rightarrow 10^{19} \text{ eV}$



Calibration Pulsers





#### 🚺 Тне Он





USA:

Ohio State University Cal Poly University of Chicago University of Delaware University of Kansas University of Maryland University of Nebraska University of Wisconsin – Madison

# ARA is an International

#### **Collaboration**

| UK:      | University College London     |
|----------|-------------------------------|
| Belgium: | Université Libre de Bruxelles |
| Japan:   | Chiba University              |
| Taiwan:  | National Taiwan University    |
| Israel:  | Weizmann Institute of Science |

4 October 2016

UHE Radio Neutrino Astrophysics—Brian Clark (clark.2668@osu.edu)

**FCAPP** 





#### THE OHIO STATE UNIVERSITY



CARTFacil

RF ANECHOIC CHAMBER



Rapid prototyping and testing of electronics







Pick & Place machine for rapid assembly.

Large thermal chamber.

Large RF/ anechoic chamber.







#### **ARA Current Status**

- Under phased construction in the ice near South Pole
- Prototype ("Testbed") + 3 stations deployed so far
- Two more stations in 2017!



Deployed ARA Station

Instrumentation deployment in 17 / 18. Site / road preparation in 16 / 17.

Potential if support is available













#### **Backgrounds to Signal**

- Radio blackbody (thermal) emission of ice
- CW wave (CW) sources: satellites, radios, human bases..
- Electromagnetic interferneces: lights, static discharge





#### The Ohio State University



**Calibration Pulser Event** 

**Testbed Station** 

### Signal Identification: In Hardware

#### <u>Impulsive</u>

- Power Trigger: integrated power over ~10ns must be > threshold
- Effective at identifying neutrinos: pulses have large integrated power

#### <u>Coincidence</u>

- Coincident requirement: trigger in 3/8 antennas
- Good at rejecting thermal noise: noise "rarely" fluctuate high in 3/8 simultaneously











#### **Signal Identification: In Software**

#### Signal Must be Broad in Frequency

- Impulsive signals are broadband
- Anthropogenic backgrounds are usually narrow band (people talking on radio, for example)







#### ССАРР

### Interferometric Maps: Directional Reconstruction

- Timing information  $\rightarrow$  geometry information
- Punitive source angle  $\rightarrow$  Time Delay  $\rightarrow$  Correlation Value for that delay
- Take Hilbert envelope to interpret as *power*









#### **Interferometric Maps**

- Punitive source angle  $\rightarrow$  Time Delay  $\rightarrow$  Correlation Value for that delay
- Plot that correlation value for all points on the sky, for all pairs of antennas









# **Analyses and Results**

# Search for diffuse neutrinos Search for point sources





#### Interferometry

- Ask for unique, well defined peaks: rejects >95% of thermal noise
- Reject all events from human campsites or that have repeating RF direction







#### Interferometry

- Ask for unique, well defined peaks: rejects >95% of thermal noise
- Reject all events from human campsites or that have repeating RF direction







#### Signal Strength

- Combination cut on signal and correlation strength
- Tune cuts on 10% of data
- Choose cut line for best expected flux limit



Figures by C. Pfendner







- Expected background: 0.06, Expected neutrinos: 0.02, 0 Events survived cuts
- Limits on diffuse neutrino flux from 415 days of ARA Testbed.
- Predictions for ARA 37 limits
   <sup>10</sup>
   (red line) are competitive and
   capable of model
   <sup>10</sup>
   discrimination.
   <sup>10</sup>
   <sup>10</sup>



P. Allison et al for the ARA Collaboration Astropart Phys, Vol 70 (2015).







#### **Two Stations Diffuse Limit**

Limits on diffuse neutrino flux from 10 months of two stations.

Predictions for ARA 37 limits (red line) are competitive and capable of model discrimination.









#### **Two Stations Diffuse Limit**



P. Allison et al, for the ARA Collaboration. Phys. Rev. D 93, 082003 (2016).

4 October 2016





#### **Searching for Neutrinos from GRBs**

- Some (untested) models for GRBs require the emission of neutrinos
- Testbed was live and has good data for 57 GRBs



4 October 2016





#### **Searching for Neutrinos from GRBs**

- "Relaxed" diffuse search: GRB allows strict cuts on timing and source direction
- Blinded search strategy
  - Optimize cuts for best limit, using 10% of background region
  - Check in remaining 90% of background region
  - Search in the signal period









### Testbed GRB Flux Limit

- Expected backround: 0.12, Expected neutrinos: 1.7e-5, 0 events survived cuts
- Limits on the GRB flux from 57 GRBs from 224 days of ARA testbed
- First quasi-diffuse flux limit above 10<sup>16</sup> eV



*P. Allison et al, for the ARA Collaboration.* Arxiv 1507.00100v1







# **Future Plans**







### **Future Plans: Phased Array**

- Strategy for improving sensitivity: reduce background with signal averaging
- Place a phased trigger string amongst pointing array
- Coherently sum many antenna waveforms before triggering: "beamform"









### **Future Plans: Phased Array**

- Higher sensitivity!
- Lower thresholds, higher efficiency, larger effective volumes
- Ability to turn off "loud" beams

Funded! Will be deployed on ARA5 in 2017! Led by A. Vieregg at U Chicago.











### **Future Plans: Dynamic Signal Attenuation**

- What's new
  - Microcontrolled variable attenuators
  - Dynamic correction to season variation in signal chain gain
- Advantages
  - Better utilization of system dynamic range
  - No partnered parts problems
  - Simpler analysis





DEPARTMENT OF PHYSICS .

ASPIRE

Analyze ANITA data

with Mathematica.

October 2016





- NSF funded workshop for high school women
- Hands on projects

Check us out! u.osu.edu/aspire

Perform radio

interferometry.



Build and progra microcontroller radios.







#### **Summary**

- Neutrinos are key windows to fundamental physics
- Smarter analyses, better electronics, and new designs will continue to enhance sensitivity
- The next generation of UHE neutrino observatories will contribute greatly to the era of multi-messenger astronomy



#### The Connolly Group and my research is generously supported by:

- NSF GRFP Award DGE-1343012
- NSF CAREER Award 1255557
- NSF Grant 1404266 and NSF BigData Grant 1250720
- The Ohio Supercomputer Center
- The OSU Department of Physics and Astronomy
- The OSU Center for Cosmology and Astroparticle Physics
- US-Israel Binational Science Foundation Grant 2012077







# **Back-up Slides**

4 October 2016







#### **Alternate Station Schematic**







#### THE OHIO STATE UNIVERSITY



#### **Phased Array Capability**

