

Use of Stokes Parameters in Hard X-Ray Polarimetry

Brian Clark
Senior Honors Thesis Presentation
Monday, March 3 2013

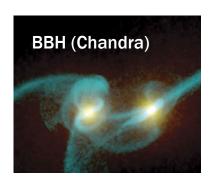
Mentors: Dr. Henric Krawczynki and Dr. Fabian Kislat X-Ray and Gamma Ray Astroparticle Physics Group

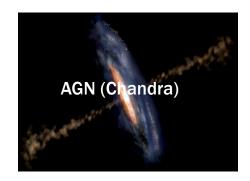
Scientific Motivation

- Binary Black Holes (Schnittman & Krolik 2010)
 - Probe accretion disk inclination and spin
 - The shape of the x-ray corona

Pulsars

- Discriminate between physical processes—curvature vs. synchrotron emissions (different phase morphology)
- Constrain/ determine shape of pulsar beam (oscillations in amount of x-ray polarization shape dependent)
- Active Galactic Nuclei (AGN) and their Jets (Krawczynski 2012)
 - Information about magnetic field near jet base (hard x-ray emission in uniform field near base)

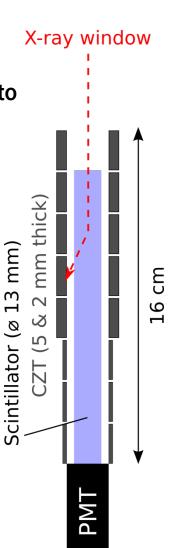




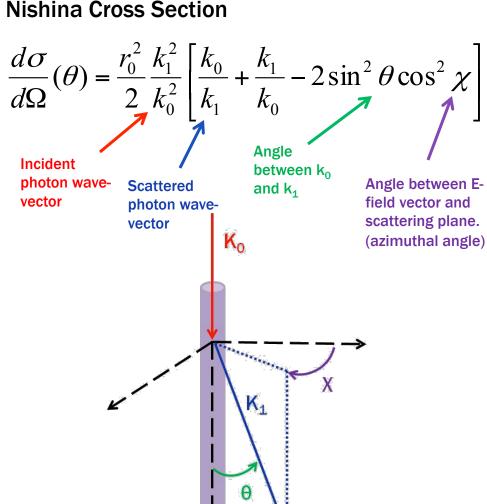
X-Calibur Principles

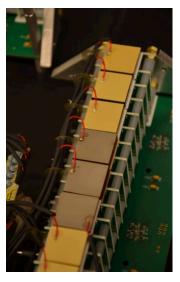
Photons interact with materials by Compton scattering (low-Z) or photo absorption (hi-Z).

X-Calibur combines both. Low-z
Scintillator Compton scatters the incident photon; hi-Z CZT detector photoabsorbs it.



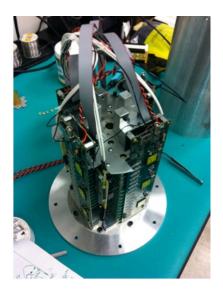
This scattering is governed by the Klein-Nishina Cross Section





CZT detector panel

ASIC board (read-out CZTs)



4 ASIC boards around the scintillator (CZTs face inwards)

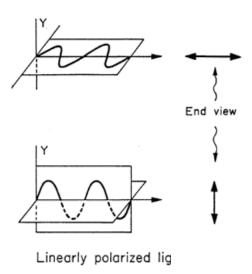
 $InFOC\mu S$ gondola with 8m optical bench (Tueller et al., NASA GSFC)

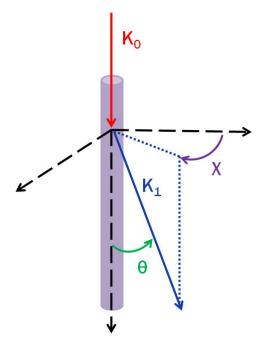
Kunieda et al., Nagoya Univ.

255 shell Al mirror with 50 cm² area at 30 keV (Pt/C coating).

Characterizing Polarization

- Polarization—oscillations in the plane perpendicular to a wave's direction of travel
- Can be linearly or elliptically polarized
 - Cannot measure elliptical polarization with apparatus like X-Calibur
 - That's ok, galactic and extragalactic objects exhibit linear polarization mostly, anyway (Krawczysnki 2012)
- Linear polarization characterized by polarization angle and fraction
- Fraction (π) —portion of the wave that is polarized
- Angle (χ) —the angle of the projection of the polarization vector relative to the vertical axis (in the case of polarimetry)
- Modulation factor (μ) –defined as the observed polarization fraction for a 100% polarized beam
 - Dependent on physics of Compton scattering and design of polarimeter
 - For X-Calibur, μ~0.5





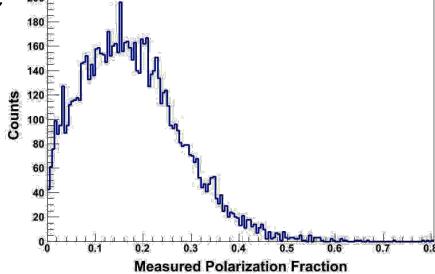
5

My Project

- Astrophysical source has some unknown polarization (π_{true} , χ_{true})
- We have limited experimental statistics (cannot observe the source forever!)
- Even in a beam with 0 polarization fraction, always measure something; π_{computed} must be ≥ 0

• Therefore, for a small $\pi_{\text{true}}\text{,}$ distribution of measured fraction is

not centered about the true value



- Using Bayesian statistics:
 - Find better guess (π_{guess}) of π_{true}
 - Create probability distribution for this π_{guess}
 - Use the probability distribution to set error bars on a π_{guess} given μ

Analysis Techniques—Stokes Parameters

- Unique to my project: propose analyze the signal photon-by-photon, using a Stokes decomposition
- Decompose wave into its intensity, horizontal, vertical, and circular polarization components
 - We only work with the first three

For single photon, have azimuthal scattering angle (χ) , define q and u (the horizontal and vertical components of polarization):

$$q = \cos(2\chi)$$
 $u = \sin(2\chi)$ $i = n$

For a collection of photons, define fractional degree of polarization (π_0) and polarization angle (χ_0) :

$$\pi_0 = \frac{2}{\pi} \frac{\sqrt{Q^2 + U^2}}{I} \tan(2\chi_0) = \frac{U}{Q}$$

$$Q = \sum_j q_j \qquad U = \sum_j u_j \quad I = \sum_j i_j = N$$

Analysis Techniques—Statistics

- I simulate a source with $(\pi_{true}, \chi_{true})$.
- Model the detection of these photons in a generic detector with modulation factor $\boldsymbol{\mu}$
- Compute best guess for true polarization, call it (π_{guess} , χ_{guess}).

The probability of measuring a random (Q,U) given we know the true values (Q_0,U_0) .

Convert from intensities to polarization fraction and angle:

Independent variables
$$P(Q,U \mid Q_0,U_0) = P(Q \mid Q_0)P(U \mid U_0)$$

$$= \frac{1}{2\pi\sigma^2} \exp \left[-\frac{(Q - Q_0)^2 + (U - U_0)^2}{2\sigma^2} \right]$$

$$P(\pi, \chi | \pi_0, \chi_0) =$$

$$= \frac{1}{2\pi\sigma^2} \exp \left[-\frac{\pi_0^2 + \pi^2 - 2\cos[2(\chi - \chi_0)]}{2\sigma^2} \right]$$

Analysis Techniques—Statistics

This is P(π , χ | π _{0,} χ ₀). Want P(π _{0,} χ ₀ | π , χ).

Apply Bayes' Theorem to "invert" the distribution.

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Applied to our system:

$$P(\pi_{0}, \chi_{0} \mid \pi, \chi) = \frac{P(\pi, \chi \mid \pi_{0}, \chi_{0}) P(\pi_{0}, \chi_{0})}{\int_{0}^{1} \int_{0}^{\pi} d\pi_{0} d\chi_{0} \left[P(\pi, \chi \mid \pi_{0}, \chi_{0}) P(\pi_{0}, \chi_{0}) \right]}$$

The prior (what we assume we know about the polarization of the signal). For me, =1 (know nothing, worst case scenario) $P(\pi_0,\chi_0)$

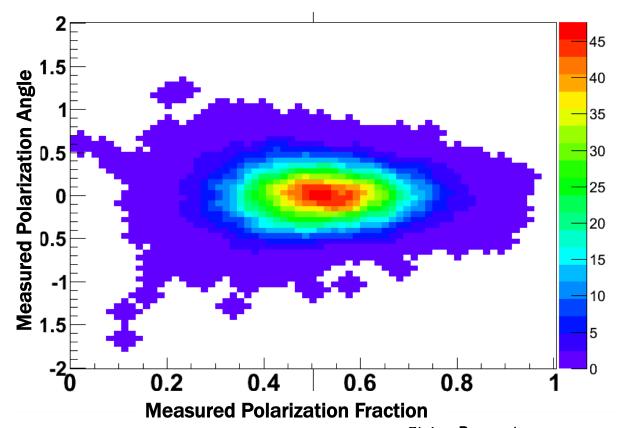
Methods

Steps 1→3: Simulating Measurement Runs

1- Generation of photons for one fixed (π_0, χ_0) , and given μ , according to Klein-Nishina.

2-Extraction of polarization parameters (Q,U, π , χ) for each measurement run.

3- Simulate many measurement runs (repeat 1-2), plot the distribution of (π,χ)



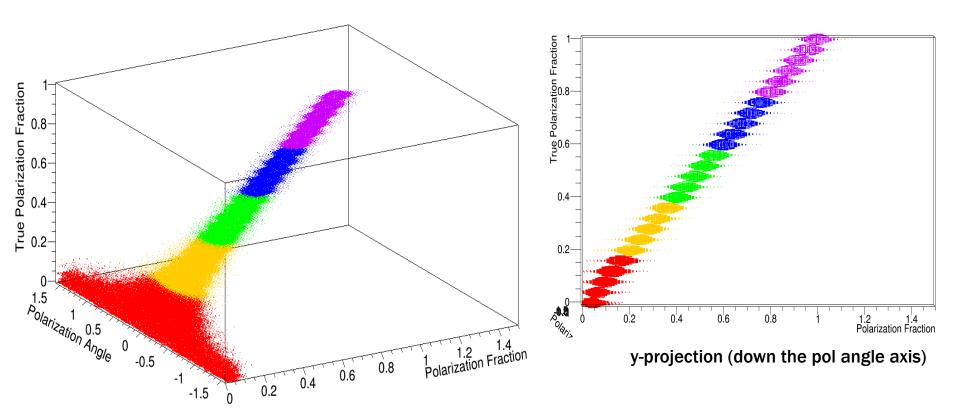
 $π_0$ =0.5, $χ_0$ =0, μ=0.5 500 events 1000 measurements

Methods

Steps 4 \rightarrow 5: Evaluation for Many π_0 and Normalization

3- Repeat steps 1-3 (generation of a "slice" of π_0) for all π_0 , $0 \rightarrow 1$.

4- Normalize each slice (so sum of all probabilities is 1).



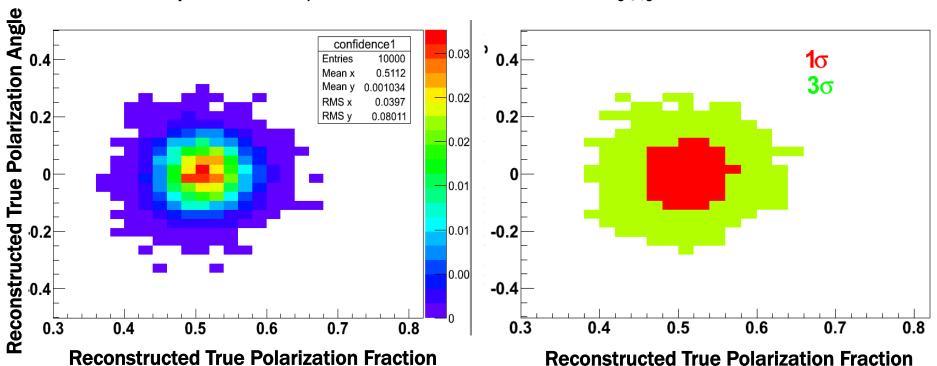
 π_0 =.5, χ_0 =0 5000 events, 10000 measurements

Methods

Steps 6→7: Inversion and Interval Extraction

6- Invert the 3-D distribution according to Bayes' Theorem (is a rank 4 tensor, stored in a N-dimensional sparse matrix)

7- Extract confidence interval for a (π,χ) of interest—tells you with what confidence your measured (π,χ) represent (π_0,χ_0) .



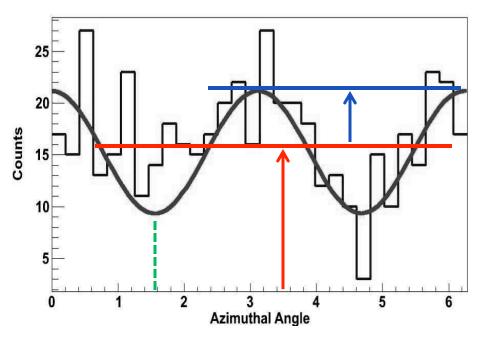
Conclusion

- Successfully applied Bayes theorem to generate confidence intervals and set error bars on a measured (π , χ)
- Future research interest and next steps
 - Raising the number of measurements
 - Assuming a non flat prior

Thank You! Questions?

EXTRA SLIDES

Analysis Techniques—Fitting



Polarization determined by fitting sine waves to distributions of azimuthal scattering angles, and extracting relevant fit parameters.

Polarization Fraction π = Amplitude / (Mean Value* μ)

Polarization Angle= Phase

Minimum= Polarization Angle

Amplitude

Mean Value

Source of the sinusoidal signal in the azimuth: the Klein-Nishina

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{r_0^2}{2} \frac{k_1^2}{k_0^2} \left[\frac{k_0}{k_1} + \frac{k_1}{k_0} - 2\sin^2\theta \cos^2\chi \right]$$

Analysis Techniques—Stokes Parameters

- Utilizes the "maximum amount of available information"
 - Working directly with the discrete photons avoids information lost when they are binned in the azimuthal histogram
- Avoids pitfalls of binning and fitting
 - Measured fraction distribution systematically broaden as histogram bin number rises
 - Computed fraction and angle depend intimately on the goodness of fit of the wave—problematic for low event numbers
- Note: Should always plot the azimuth to ensure signal is actually sinusoidal; the Stokes cannot tell you that

