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This review consists of two parts: (i) an introductory exposition of the foun-

dation of perturbative QCD, which underpins the universally used QCD par-

ton picture of high energy interactions; and (ii) a survey of recent progress

on the parton structure of the nucleon – through global QCD analysis of a

full range of hard scattering processes, using available theoretical tools and

experimental measurements. The three key features of perturbative QCD

– asymptotic freedom, infrared safety, and factorization – are discussed in

some detail, using a pedagogical approach. The review of global QCD anal-

ysis emphasizes the non-trivial underlying issues, current uncertainties, and

the challenges which await due to the demands of precision standard model

studies and new physics searches in the next generation of experiments.
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1 Introduction

Quantum Chromodynamics (QCD) is the universally accepted theory of strong interaction physics.
The theory of QCD has a remarkable simplicity and elegance at the classical level, with its under-
lying non-Abelian SU(3) color symmetry; and unmatched richness after quantization, as revealed
by a whole spectrum of contrasting behaviors over a wide range of energy scales, from confinement
to asymptotic freedom, in addition to various possible phase transitions under extreme conditions.
But the faith in QCD as a true physics theory ultimately is founded, at least up to now, on the
successes of perturbative quantum chromodynamics (PQCD) where its wide-ranging predictions
are compared to the wealth of experimental data on high energy hard processes, accumulated in
the last thirty years at a variety of experimental facilities, covering numerous physical processes in
lepton-lepton, lepton-hadron, and hadron-hadron collisions.

In the first part of this contribution, we shall try to capture some of the highlights and spirits of
this remarkably successful theory of PQCD. As is well known, the unique feature of the underlying
quantum field theory which makes the perturbative approach useful in QCD, is asymptotic freedom.
Equally important are the crucial concepts of infrared safety and factorization, without which it
would not be possible to apply the results of perturbative calculations on partons (quark, gluons,
vector bosons, . . . etc.) to the world of observed hadrons, electro-weak bosons, Higgs and other new
physics particles. In fact, the proof of factorization establishes the theoretical foundation of the
QCD parton model, which provides the basic language, and picture, for describing all high energy
interactions involving hadrons nowadays in particle physics.

Because PQCD is already a mature field, there is no need to systematically review its ba-
sic formalism and its conventional implementation here. Good textbooks1,2,3,4 and reviews5,6,7,8

abound both for an introduction to the subject and for comprehensive references. In this part, we
shall take an informal and pedagogical approach distinguished by: (i) integrating in the presenta-
tion some important experimental evidence and motivation for PQCD; and more importantly, (ii)
emphasizing the key features of infrared safety and factorization, from angles different from the
formal textbook approaches, with the help of graphical illustrations. We hope, this will complement
the conventional, more formal, expositions and add to the understanding of the foundation of the
factorization-theorem-based QCD parton model for nonexperts.

The QCD parton model has several interesting facets, all of which are important (cf. Sec. 4.6: Three
faces of . . . ). One of these is that it provides the basis for the global QCD analysis of a full range
of hard scattering processes, using all available theoretical tools and experimental measurements,
to determine the parton distribution functions (PDFs) of hadrons, particularly nucleons. These,
in turn, are indispensable input to the wide range of calculations (predictions) on standard model
and new physics processes. The second part of this article consists of a survey of current issues
on the relevant hard scattering processes, as well as on global analysis of the parton structure of
the nucleon. In addition to describing the current status, this part will emphasize the non-trivial
underlying issues, the inherent uncertainties, and the challenges which await due to the demands of
precision standard model studies and new physics searches in the next generation of experiments.

Together, these two parts aim to provide a useful background for the more adventurous topics
on nonperturbative QCD which occupy most of these three volumes of Handbook of QCD in honor
of Boris Ioffe. Because of the nature of this article, references are introduced only to add to or to
extend the presentation; and, in general, more emphasis is put on review articles than on original
papers.
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2 Perturbative QCD and the Simple Parton Model

QCD is a quantum field theory of quarks and gluons endowed with a non-abelian gauge symmetry
group – SU(3) of color. The classical Lagrangian which explicitly exhibits this symmetry is given
by the Yang-Mills formula:

Lclass = ψ̄(i 6∂ − g 6A · t−m)ψ − 1
4
Tr GµνG

µν (1)

where ψ, A are the quark and gluon fields; {t} are SU(3) group generators in the fundamental
representation; · denotes a sum over the index for the generators; g is the gauge coupling constant;
m is the (diagonal) mass matrix of the quarks; and G, the gluon field strength tensor, is given by
Gµν · t = (∂µAν − ∂νAµ) · t− i g [Aµ · t, Aν · t]. The fundamental constants of this theory are:
• the gauge coupling constant g, or equivalently “alpha-strong” αs ≡ g2/4π;
• the quark masses mi, i = 1, ..., nf , where nf (= 6) is the number of quark flavors; and implicitly,
• the SU(3) group structure constants, CF (= 4

3), CA (= Nc = 3), and TR (= 1
2).

In order to quantize this theory, at least within the perturbative formalism, the classical Lagrangian
has to be supplemented by a gauge-fixing term, and, in certain classes of gauges (e.g. covariant
gauges), also a ghost Lagrangian

Leff = Lclass + Lgauge−fixing + Lghost . (2)

The basic formalism of perturbative QCD, embodied in a set of Feynman rules for practical pur-
poses, is well-established and covered in the textbooks and review articles cited in the Introduction.

In principle, the above Lagrangian begets the full richness of QCD physics, both perturbative
and non-perturbative. But how do these abstract quantum fields relate to our real world of leptons,
hadrons, and electroweak gauge bosons? The connection is provided, of course, by the quark-parton
picture which phenomenologically describes all high energy processes. The following subsections
very briefly highlight the experimental observations which underpin the quark parton model. This
leads to asking the question the other way around: how could the quantum field theory of QCD give
rise to such a simple picture of high energy interactions as the quark parton model? The answer
to this question forms the bulk of the modern theory of PQCD and all its important applications.

2.1 The experimental evidences of quarks and gluons

The idea of quarks, and the glue which holds them together, originated from hadron spectroscopy.
Since quarks and gluons have never been seen in the experimental world, the first logical question
to ask, independent of any theory, is: how do we really know they exist? The answer turns out
to be amazingly simple: although we have not seen single quarks or gluons, 1 their presence is
routinely, and unmistakably, revealed in high energy interactions as distinctive “jets.” In addition,
their couplings to the electroweak bosons {γ, W±, Z} have been extensively measured to be those
specified in the Standard Model (SM). We very briefly summarize these remarkable results; and
use these to motivate the deep theory issues to be explored in PQCD.

2-jet events in e+e− collisions and quarks Figure 1a shows a typical hadronic final state event
in e+e− annihilation at 91 GeV center-of-mass energy (LEP). In comparison to a known 2-particle
leptonic final state event e+e− → µ+µ−, shown in Fig. 1b, it is clear that the 2 jets originate

1Presumably because they are confined; but this has yet to be convincingly proven.
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Figure 1: Typical event in e+e− → hadrons has 2-jets in the final state (left), compared to e+e− → µ+µ− events

(right): clear evidence for qq̄ creation.

from point-like parents very much like the leptons. The angular distribution of the axis defined by
the back-to-back jets with respect to the incoming e+e− is measured to be of the familiar shape

dσ
d cos θ ∝ (1− cos2 θ) associated with spin-1

2 elementary particles. This is shown in Fig. 2.

Figure 2: Angular distribution of the 2-jet axis implies spin = 1
2

for quarks.

The interpretation of these results is inescapable: the e+e− annihilate into a quark-anti-quark
pair which then “hadronize” into the observed pencil-like jets, as illustrated in Fig. 3.

Figure 3: Feynman diagram and CM kinematics for e+e− → qq̄ → 2 jets

5



3-jet events in e+e− collisions and gluons Although the gluon is a bit more elusive than
the quarks, particularly since it does not directly couple to electroweak probes, the experimental
evidence for the existence of gluon jets is equally convincing. The experimental plot in Fig. 4
shows a typical 3-jet event in e+e− annihilation at LEP which comprise about 10% of the hadronic
events. The natural interpretation of these events, as due to a qq̄g partonic final state with
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Figure 4: Typical 3-jet event in e+e− → hadrons: clear evidence for e+e− → qq̄g → 3 jets.

subsequent hadronization of the quarks and gluons into hadronic jets, is depicted at the right in
the same figure. Detailed experimental study of the angular distributions of the three jets confirms
this picture – the spin of the particle underlying the third jet has been shown to be consistent
with 1, but inconsistent with 0 or 2 – i.e. the gluon parton is a vector boson. We will come back
to discuss the theoretical issues related to the gluon radiation diagrams in the section on infrared
safety.

2.2 The electroweak properties of quark partons

The couplings of the quark partons to the electroweak bosons have been extensively studied in
lepton-lepton, lepton-hadron and hadron-hadron collisions as depicted in Fig. 5. Using a variety

Figure 5: Leading order subprocesses probing the electroweak couplings of quarks to γ, W , and Z: e+e− → qq̄;

`q → `′q (DIS); and qq̄′ → ``′ (DY).

of initial and final states in e+e−, e±N, µ±N, ν(ν̄)N, pN, p̄p interactions (cf. later sections), the
electroweak charges and couplings of the quarks have been shown to follow the pattern of that of
the 3 generations of leptons, and are given in Table 1.
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Table 1: Quark flavors and their couplings to electroweak vector bosons. gV and gA are the vector and axial vector

couplings; and Vij is the CKM matrix.

quarks Q T3

u c t 2
3

1
2

d s b 1
3 −1

2

γ Z W±

gV Qi T i
3 − 2Qi sin2 θW 1 · Vij

gA 0 T i
3 1 · Vij

2.3 How can the simple quark parton picture be true in a strongly interacting gauge field theory
such as QCD?

How can the simple quark parton picture, so clearly demonstrated by the experiments highlighted
above, be true in a strongly interacting gauge field theory such as QCD? The obvious answer
given usually is: because the QCD theory is asymptotically free – i.e. the quantum theory, after
(ultra-violet) renormalization, is characterized by a running coupling αs(µr) which decreases loga-
rithmically as a function of the renormalization scale µr; thus, the effective coupling becomes small
in high energy interactions where it is natural to set µr ∼ Q, with Q being a typical large physical
scale. It is important to add, however, asymptotic freedom is only a necessary condition for the
validity of the parton picture; it is not sufficient by itself. This is obvious: even with asymptotic
freedom, one can only calculate “cross sections” for quarks and gluons; these have no obvious
connection to physically measurable processes because quarks and gluons are confined. To make
this crucial connection, thus establishing the full modern quark parton model from QCD, it is just
as important to have the concept of infrared safety and factorization. We review the status of
asymptotic freedom in this subsection, then explore the other two, more subtle, concepts in their
own sections to follow.

Asymptotic Freedom in QCD

The conventional way of expressing asymptotic freedom is through the dependence of the linear
coupling g(µ) =

√
4παs(µ2), 2 as expressed in the basic renormalization group equation (RGE):

µ
dg(µ)
dµ

= β(g(µ)) , (3)

where the beta function is a power series in g beginning at O(g3),

β(g) = −g

(
αs

4π
β1 +

(αs

4π

)2
β2 + · · ·

)
. (4)

β1 can be obtained from a 1-loop calculation of any other physical quantity that depends on µ in
perturbation theory. At leading order (LO), it is

β1 = 11− 2nf/3 = (11Nc − 2nf )/3 , (5)

where nf is the number of flavors of quarks and Nc the number of colors. The positive contribution,
11, comes mainly from the non-abelian diagrams, such as Fig. 6a in a quark-quark scattering process.
The negative contribution, −2nf/3, which weakens asymptotic freedom, comes from the fermion
loop diagram in Fig. 6b. In these terms, the solution to the lowest order approximation to Eq. (3)

2We shall drop the subscript r (for renormalization) whenever this does not cause any confusion. Later, there will

be another µ – µf for factorization scale – which needs to be distinguished from µr.
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(a) (b)

Figure 6: Feynman diagrams for quark-quark scattering at 1-loop: (a) loops with non-abelian couplings; and (b)

“QED-like” loop diagrams.

can be written in terms of a single constant Λ which characterizes its strength at any given scale,

αs(µ2) =
4π

β1ln(µ2/Λ2)
(lowest order), (6)

This scale constant is the famous “ΛQCD”. It is of the order of 300 - 500 MeV, depending on the
number of quark flavors, nf .

The next-to-leading order (NLO) solution for αs(µ2) is obtained by using the first two terms
in the beta function. There is some freedom of choice in its precise definition at NLO. One
conventionally writes αs(µ2) in an expansion in powers of 1/ ln(µ2/Λ2), where the coefficient of
[1/ ln(µ2/Λ2)]n is a polynomial in ln(ln(µ2/Λ2)). Keeping β1 and β2 allows us to determine the
coefficients of [1/ ln(µ2/Λ2)]2,

αs(µ2)
4π

=
1

β1ln(µ2/Λ2)
− β2ln(ln(µ2/Λ2))

β3
1 ln2(µ2/Λ2)

+ O

(
1

ln3(µ2/Λ2)

)
, (7)

where β2 = 102 − 38nf/3. Notice that there is no contribution of the form c/ ln2(µ2/Λ2). Such a
contribution can be absorbed into a redefinition of Λ. One defines Λ by the condition that c = 0.
If renormalization is carried out according to the MS scheme, then Λ here is called ΛMS.

Experimental evidence for asymptotic freedom Since the strong coupling enters into the
calculation of all processes beyond the leading order, it can be measured, in principle, in all processes
involving hadronic particles. The universality of the function αs(µ) provides the most powerful and
decisive test of the validity of QCD. Fig. 7a shows a compilation of many measurements of αs(µ)
made in a variety of physical processes, at energy scales ranging from just above 1 GeV to 200
GeV. 3 The logarithmic decrease with the scale µ implied by Eqs. 6 and 7 is dramatically seen.
The universality of these measurements of the running coupling at different scales can be tested by
converting all the values to the same scale using the RGE 7. The standard scale is usually chosen
to be µ = MZ . The result is shown in Fig. 7b. The agreement is clearly remarkable.

What is still missing?

All the “measurements” of αs(µ) shown in Fig. 7, of course, are obtained from comparing PQCD
calculations with measured physical quantities. As mentioned earlier, the connection between the
perturbatively calculable partonic cross sections and the physical variables involving hadrons re-
quires much more than asymptotic freedom. The problem arises already at the parton level. When
one calculates partonic processes beyond the leading order (tree graphs), traditional cross sections
involving definite number of particles in the final states will be divergent near kinematic boundaries,
even after renormalization, in the limit of high energy or vanishing mass of the partons. One can
3We thank S. Bethke and W. Gary for providing this, and other illuminating tables and figures in the following

section, as well as helpful discussions concerning QCD studies in e+e− interactions.
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Figure 7: Experimental measurements of the universal QCD running coupling function αs(Q): (a) as a function of

Q; (b) all measurements converted to an equivalent αs(MZ).

obtain finite meaningful answers only for certain classes of cross sections, generally of the inclusive
type, which are either infrared safe, or that can be factorized into an infrared safe (short-distance)
component and a non-perturbative (long-distance) component which are determined phenomeno-
logically. These are the class of physical observables which can be readily interpreted in the (QCD-
improved) quark parton model. We will explore these two important topics, both theoretically
and phenomenologically, in the next two sections.

3 Infrared Safety (IRS) and Basic Tests of QCD

This section highlights the general features of infrared singularities, their (long-distance) space-time
origin and the cancellation of these singularities in the class of observables which are infrared safe.4

It concludes with quantitative tests of PQCD based on comparing the predictions of these infrared
safe quantities with experimental measurements. These comparisons also allow the determination of
the SU(3) group constants for the underlying color symmetry. The physics issues will be illustrated
mainly with the calculation of the total hadronic cross section of e+e− interaction.

3.1 Collinear and soft singularities

Up to NLO in PQCD, the total hadronic cross section for e+e− interaction, e+e− → hadrons,

is given by the underlying partonic process e+e− → qq̄ and e+e− → qq̄g. The relevant Feynman
diagrams are shown in Fig. 8. The leading order graph, Fig. 8a, is trivial to calculate. The vertex
correction to it, Fig. 8b, we will return to later. The essence of the interesting physics issues
mentioned in the introductory paragraph can be brought out by examining the 2 → 3 gluon-
radiation process represented by Fig. 8c.

4Parts of this section are adapted from ref. [6], thanks to permission by D. Soper. For a more theoretical exposition

of infrared safety, see ref. [7].
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Figure 8: Feynman diagrams for e+e− → hadrons to NLO in αs.

For the three particles in the final state, let xi = p0
i /2

√
s be the fractional energy carried by

the ith particle, i = 1, 2, 3. See Fig. 9a. As usual, at high energies, it is convenient to neglect the
mass of the quark. It is easy to show that, kinematically,

Σi xi = 2 (energy conservation)
2(1− x1) = x2x3(1− cos θ23) (and cyclicpermut.).

(8)

The phase space, in terms of the three variables {xi}, consists of the inside of a triangle in a “Dalitz
plot” shown in Fig. 9b which is important for the following discussion. Note that the sides of the
triangle (xi = 1; for some i) correspond to collinear configurations, where all momenta are along a
line; and the corners of the triangle (xi = 0; for some i) correspond to the soft configuration when
one particle has vanishing energy and the other two are back-to-back. Both exceptional situations
are explicitly depicted in Fig. 9b.

The differential cross section due to the e+e− → qq̄g process, Fig. 8c, is given by

dσ

σ0dx1dx2
=

αs

2π
CF

x2
1 + x2

2

(1− x1) (1− x2)
, (9)

here σ0 is the LO total cross section and CF is one of the group constants.
It is easy to see that the differential cross section diverges near the boundaries of the phase

space, when either xi = 0 or xi = 1, since either condition will cause the denominator in Eq. (9)
to vanish, according to Eq. (8) and Fig. 9b. If we try to integrate Eq. (9) over the 3-particle
phase space to calculate the “total cross section” for e+e− → qq̄g, we would get a logarithmically
divergent answer – this quantity is infrared singular. In other words, the total cross section for

Figure 9: Kinematics of the 3-particle final state in e+e− → qq̄g (a) momentum configuration; (b) the “Dalitz” plot.
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this 2 → 3 process is not infrared safe. What is the origin of this singular behavior? We have
already seen from Fig. 9b, these singularities are associated with collinear and soft configurations
in momentum space. It can be easily deduced from Eq. (8) and Fig. 9b that in both degenerate
kinematic situations, the “virtual particle” line, having 4-momentum k = p1 + p3 in the case of
Fig. 8c, goes on mass-shell – k2 = 0 (or k2 ' m2 if we had kept a small quark mass).

The singular region lies at the boundaries of the phase space, where the 2 → 3 kinematics reduce
to that of an equivalent 2 → 2 process. This observation suggests that the proper interpretation and
treatment of these apparent divergent results must involve simultaneous consideration of e+e− →
qq̄g with the 2 → 2 partonic process e+e− → qq̄ at the same order of αs, as we will discuss in the
subsection following the next.

First, it is instructive to find out the space-time picture associated with these singular config-
urations.

3.2 Singularities are due to long-distance space-time interactions

In the space-time picture, the collinear and soft singularities are associated with long-distance
interactions. This can be seen as follows. We will examine the relation between the momentum
space and space-time descriptions using the very convenient light-cone components of 4-vectors:

v± = (v0 ± v3)/
√

2 (10)

which implies
k2 = 2k+k− − k2

T (' m2 ' 0, if on mass shell)
x · k = x−k+ + x+k− − ~xT · ~kT

(11)

For the situation appropriate for examining collinear and soft singularities, let us choose the z-axis
to be close to the direction of the collinear partons, ~k, and opposite to the direction of ~p2. Since the
Green functions in the two spaces are related by the 4-dim Fourier transform

∫
d4k eik·xSF (k) . . .,

the momentum space conditions,

k+ ' √
s
2 (very l arg e) ; k− = k2

T +m2

2k+ ∼ k2
T +m2

√
s

(very small), (12)

translate to the conjugate space-time configuration

x+ ∼
√

s
k2

T +m2 (very l arg e) ; x− ∼ 1√
s

(very small). (13)

The k- space and x-space configurations are illustrated in Figs. 10a,b.

Figure 10: Important regions contributing to the infra-red singularities: (a) in momentum space; and (b) in space-

time.
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Figure 10b shows that the interaction region which gives rise to infrared singularities is at a
long distance away from the creation of the quark-anti-quark pair (at the origin of the coordinate
system in the picture). This fact is important for subsequent discussions. We note that these
singular regions represent one of the simplest examples of solutions to the Landau equations for
pinch surfaces of general Feynman diagram, supplemented by the Coleman-Norton theorem.2

3.3 Infrared safety and cancellation of IR singularities

What can, or should, be done with the IR singular contributions to the cross section calculation?
Since physical cross sections are finite by definition, these singularities in the perturbative calcu-
lation of partonic cross section must be artificial. They should disappear when we ask the right
physics questions, and make the proper connection between these and the partonic calculations.
The fact that the relevant phase space region corresponds to configurations when the “virtual”
quark line with momentum k almost goes on mass-shell (hence becomes “real”), that the kinemat-
ics of the 2 → 3 process is degenerate with that of an equivalent 2 → 2 one, and that the interaction
happens at long distances away from the e+e− → qq̄ interaction vertex in space-time, all point to
the fact that the relevant physics observables must be insensitive to long-distance interactions and
to the indistinguishable 2 → 2 and 2 → 3 origin of the interaction. For example, if we are only
interested in the total cross section, then what happens at long distances is unimportant. After
the initial qq̄ pair is created, the probability for them to turn into hadrons, even if happening at
long-distances, is unity – whether one of the quarks split into two partons before hadronization is
immaterial.

This intuitive argument rests on the principle of unitarity. Its validity is not confined to the
total cross section, since there are a large variety of physical observables which combine the 2 → 2
and 2 → 3 partonic contributions in the proper way to yield finite answers in the degenerate config-
uration, but which are otherwise completely distinct away from the boundary of phase space. The
common characteristic among all these infrared safe quantities is that they must be “inclusive”, so
as to allow the proper combination of contributions from different orders of perturbative calcula-
tions in general. The basic idea behind infrared safety goes back to the Block-Nordsieck theorem in
QED. The subject has become much richer and more sophisticated in the context of QCD, where
it forms a key element in establishing the connection between physics predictions and calculations
based on partons.2

The observations made above are only indicative of the direction toward, but does not constitute
a proof of, infrared safety. In the simple case of the total cross section of e+e− → hadrons under
discussion, it is well-known that the IR singularities in the cross section formula (9) for e+e− → qq̄g

are cancelled in a full NLO calculation by equal and opposite-sign singular contributions from the
cross-term between the LO and the vertex correction graphs of Fig. 8a,b. The full result is infrared
safe. To order α2

s, it is given by

σNNLO
h (s) = σLO

h (s)

[
1 +

αs(µ)
π

+
(

αs(µ)
π

)2

C2(
µ2

s
) + . . .

]
(14)

where

σLO
h (s) =

12πα2

s

(
Σf Q2

f

)
(15)

C2(
µ2

s
) = 1.4092 + 1.9167 ln

(
µ2

s

)
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This calculation has currently been carried out to order α3
s.

9

Both the space-time interpretation of the singularities and their cancellation in the calculation
of IRS physical quantities, such as the total cross section discussed here, represent general features
of PQCD shared by a wide range of useful applications.

3.4 IRS quantities in e+e− collisions

The above example suggests that, in order to ensure the cancellation of apparent infrared singulari-
ties in partonic cross sections, we need to form inclusive quantities which do not distinguish between
a partonic process with n + 1 particles in the final state under degenerate kinematic conditions,
when some of the particles are collinear or soft, from similar ones with the same kinematics but
fewer number of particles. Formally, one can show that10 an inclusive quantity

I =
1
2!

∫
dΩ2

dσ[2]
dΩ2

S2(p
µ
1 , pµ

2 )

+
1
3!

∫
dΩ2dE3dΩ3

dσ[3]
dΩ2dE3dΩ3

S3(p
µ
1 , pµ

2 , pµ
3 )

+ · · · . (16)

is infrared safe provided the functions {S} which define this observable are symmetric functions of
their arguments and

Sn+1(p
µ
1 , . . . , (1− λ)pµ

n, λpµ
n) = Sn(pµ

1 , . . . , pµ
n) (17)

for 0 ≤ λ ≤ 1. The simplest possible example of such an IRS quantity is obtained by choosing
Sn = 1 for all n – this gives the total hadronic cross section, i.e. I = σtot.

An important feature of IRS quantities is that, not only are the partonic calculations finite,
but also one expects the results to be applicable to the corresponding physical observables with
the partons replaced by hadronic “jets.” This is intuitively reasonable, since soft particles are not
resolvable in the detectors and collinear particles in jets can be combined to form the primitive
partons. The hadronization of a parton into an observable jet is a long-distance space-time process.
The cancellation of infrared singularities in IRS quantities means that the latter are insensitive to
the details of how the hadronization takes place – as long as the details are not experimentally
observed, unitarity ensures that hadronization occurs with the probability 1.

To study jet cross sections quantitatively, specific “jet algorithms” which satisfy Eq. (16) must
be adopted, and they must be consistent between the theoretical calculation and the definition
adopted in the experimental measurement. The original Sterman-Weinberg definition of jet cross
section11 has since been supplanted by various cone and algebraic algorithms12 in current applica-
tions.

Another class of IRS observables are “event shape” variables, of which the widely used thrust,
is a good example

Tn(pµ
1 , . . . , pµ

n) = max
~u

∑n
i=1 |~pi · ~u|∑n

i=1 |~pi| . (18)

Here ~u is a unit vector, which one varies to maximize the sum of the absolute values of the
projections of ~pi on ~u. Then the thrust distribution (1/σtot) dσ/dT is defined by taking

Sn(pµ
1 , . . . , pµ

n) = (1/σtot) δ(T − Tn(pµ
1 , . . . , pµ

n)) . (19)

It is a simple exercise to show that the thrust of an event is not affected by collinear parton splitting
or by zero momentum partons. Therefore the thrust distribution is infrared safe. For more examples
of IRS shape parameters, see Ref. [13].
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3.5 More quantitative tests of QCD in e+e− collisions

The large number of proposed IRS quantities in e+e− collisions provide a fertile ground for com-
parison between theory and experiment. Such comparisons, on the one hand, test the validity of
PQCD calculations; and on the other hand, provide many complementary ways to measure the
fundamental QCD constants which enter the theoretical expressions. Among these are the group
constants CA, CF , and TR of the color SU(3) gauge group, in addition to the universal coupling αs

already described in Sec. 2.3.

The following table illustrates the wide scope of the endeavor to study IRS shape parameters in
e+e− collision. These serve to test PQCD calculations and to measure the basic QCD parameters.13

We shall only present the result of one of these studies, the thrust distribution, as an illustration.
This will be followed by a brief summary of the measurement of the color factors resulting from
many of these shape parameter studies.
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The thrust distribution: Figure 11 shows the thrust distribution, defined in Eq. (19), as mea-
sured by the SLD experiment in e+e− collisions.14 The data is compared to NLO QCD calculations
(order α2

s, solid line) and “resummed calculation” (dashed line). The horizontal axis is τ = 1− T .
One sees that the NLO QCD calculation agrees well with experiment in the middle range of the
thrust variable, confirming the validity of the perturbative approach. But noticeable deviation
appears toward the τ → 0 (T → 1) limit. The reason is: near this edge of the phase space, large
logarithms of the form log(1/τ) in the perturbative calculation spoil the convergence of the per-
turbation series. These large contributions must be brought under control by an re-organization
of the perturbation expansion. This is referred to as “resummation.”7 In Fig. 11, the resummed
calculation (dashed line) is seen to agree rather well with the measurement.

Figure 11: (a) The trust distribution as measured by the SLD experiment, compared to NLO QCD calculation with a

fixed choice of µ, and to the resummed QCD calculation. (b) and (c) show the hadronization and detector correction

factors.

Measurement of the color SU(3) group constants: Since the theoretical expressions for
all IRS quantities depend on the the group constants of the underlying color symmetry group
SU(3), comparison of these expressions with experimental results of these quantities can be used
to measure these constants, just like the measurement of the universal QCD coupling αs discussed
earlier. Figure 12 summarizes results of the measurements of CA and CF , obtained from several
experiments on the various shape parameters. 3 We can see that the results are in perfect agreement
with the expected values for SU(3).
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Figure 12: Measurements of the ratio of QCD group constants in e+e− collisions. This figure is compiled by W.

Gary. 3

4 Factorization and the QCD Parton Model

If predictions of PQCD were confined to IRS observables only, its scope would be rather limited.
By invoking unitarity to sum over all long-distance effects, there would be no possibility of probing
the partonic structure of hadrons; nor would it be possible to make predictions of high energy
cross section processes based on existing knowledge of hadron structure. The fact that the scope
of PQCD can be greatly expanded to provide the foundation for the powerful parton model is
made possible by the remarkable property of factorization.6,7 From the perturbative point of view,
factorization applies to a large class of inclusive partonic cross sections which, although not infrared
safe by themselves, are nonetheless factorizable into a short-distance (hard) part which is IRS, and a
long-distance (soft) part which is IR singular but has the virtue of being universal. This separation
of short- and long-distance factors allows us to generalize from (calculable) partonic cross sections
to (physically measurable) hadronic cross sections.

As an extension to the discussions of IRS of Sec. 3.3, we first introduce the key ideas of factor-
ization for the one-particle inclusive cross section in e+ e− annihilation. In addition to focusing on
the physical ideas behind this important new feature, we emphasize close analogies between factor-
ization of IR singularities and textbook ultra-violet (UV) renormalization theory. These analogies,
as well as the key role of scale transformation in both cases, are summarized and highlighted in
Sec. 4.2. We then turn to the phenomenologically important deep inelastic scattering (DIS) process
in Sec. 4.3. There, we will examine factorization from a different perspective and work out a con-
crete example to show in detail how factorization of collinear singularity works, both analytically
and physically. Sec. 4.4 describes the proper definition and use of the universal parton distribu-
tions. Sec. 4.5 discusses the scale dependence of PQCD predictions. This section concludes with a
summary of the remarkable multi-facet roles played by the factorization theorem in the whole of
the QCD parton model framework in Sec. 4.6. Our discussion will be based on lowest non-trivial
order examples and heuristic arguments. For formal proofs of factorization, cf. Refs. [15,18,19].
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4.1 Essential ideas of Factorization in e + e− annihilation

Consider the the inclusive process e+e− → A(p)+X, where
A(p) represents a parton (i.e. quark or gluon) or a hadron
with momentum p and X stands for “anything.”For sim-
plicity, we consider the exchange of a virtual photon only.
The differential cross section for this process is given, in
general, by

dσ =
4α2

sQ2

d3p
2|p| L

µν ·Wµν(q, p), (20)

where Lµν is the calculable lepton tensor, Jµ(x) is the electromagnetic current 4-vector, and
Wµν(q, p) is the parton or hadron tensor defined by

Wµν(q, p) =
1
4π

∫
d4x eiqx

∑

X

〈0|Jµ(0)|A(p), X〉 〈A(p), X|J†ν(x)|0〉. (21)

It is the square of the hadronic amplitude γ∗ → A(p) + X, summed over the final states, with the
exception of the detected particle A(p). The pictorial representation of the amplitude and the Wµν

tensor are shown in Fig. 13.

(a) (b)

Figure 13: For the e+e− one particle inclusive process: (a) the hadronic amplitude; and (b) the hadronic tensor Wµν

or the corresonding structure functions F λ(z, Q).

It is convenient to introduce the helicity structure functions,

F λ
A(x,Q) = ελ∗

µ (q, p) ·Wµν(q, p) · ελ
ν(q, p), (22)

where Q =
√

s, x is the fractional energy carried by A (x = 2p0/Q), ελ
µ is the polarization vector of

the virtual photon with λ = T,L for transverse and longitudinal polarizations respectively. Then
the final cross section formula can be derived as

dσ

dz d cos θ
=

πα2

2s

[
F T

A (x,Q)(1 + cos2 θ) + FL
A (x,Q) sin2 θ

]
(23)

where θ is the CM scattering angle of A. One can also define invariant structure functions F{1,2}
by expanding Wµν in terms of a set of independent tensors; and relate F{1,2} to F {T,L}. We shall
not do this here, since our primary interest is to discuss the physics of factorization, which applies
to any of these structure functions. We will treat the kinematics in more detail for the analogous
case of deep inelastic scattering later in Sec. 5.1 when we discuss the phenomenology of PQCD.

Factorization of partonic cross sections

In perturbation theory, we can only calculate the partonic structure function, with A = α, a parton
label. We shall suppress the helicity index λ, since all considerations apply to any λ. Fα(x, Q) is
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calculated from summing all Feynman diagram contributions to the partonic processes e+e− → qq̄,
e+e− → qq̄g, . . . etc. – the same ones considered in the previous section on IRS, cf. Fig. 8; it
depends on the kinematic variables (x, Q), as well as on the basic QCD parameters (αs,mi). We
know from the previous section that at order αs and beyond, the PQCD contributions contain
IR singularities when some of the partons assume degenerate kinematic configurations. These
singularities will remain, now that we consider a final state parton with a specific momentum p,
rather than summing over all final states with some IRS prescription.

Factorization concerns isolating these singularities as universal factors (associated with long-
distance interactions as described before) and absorbing them into non-perturbative (but eventually
measurable) parton distribution and fragmentation functions – much in the same way UV diver-
gences in these perturbative calculations (associated with short-distance interactions) are isolated
into universal renormalization constants and absorbed into measurable physical constants in con-
ventional renormalization theory.

Specifically, it can be established that,15 order-by-order in perturbation theory to arbitrary
orders, all IR singular contributions to Fα are factorizable in the following way, cf. Fig. 14:

Fα(Q, x,m) =
∑

a

∫
dz

z
F̂a(

x

z
,

Q

µf
, αs) · Da

α(z,
m

µf
, αs) + O(

m2

Q2
) (24)

where m represents a generic confinement scale (quark masses or ΛQCD), F̂a is the perturba-
tively calculable (IRS) “hard” partonic structure function for producing a parton labeled “a”,
Da

α(z, m/µf , αs) is the fragmentation function of parton “a” into parton α with momentum frac-
tion z, and µf is the factorization scale.
The key features of this fundamental Factorization Theorem are:
• The factorized term on the right-hand-side consists of a convolution integral in the momentum
fraction variable. It is accurate to “leading twist” (power) approximation: it includes all logarithmic
effects (log(Q/µf ), log(µf/m)); but is subject to power-law corrections as indicated.
• The factorization refers to the separation of the functional dependence of the partonic (“bare”)
structure function Fα(x,Q, m) into a long-distance physics factor Da

α associated with the confine-
ment scale m, and a short-distance physics factor F̂a associated with the large momentum scale
Q. This is achieved with the introduction of a factorization scale µf which, qualitatively speaking,
characterizes the boundary between the two distinct physical scales.
• The left-hand-side of the equation (Fα) is manifestly independent of µf . The individual factors
in the factorized formula on the right-hand-side do depend on µf . Their convolution, however,
should be independent of µf – but only to the order up to which the perturbative calculation has
been carried out. In practice, in order to invoke asymptotic freedom and to keep the perturbative

Figure 14: e+e− 1-particle inclusive: factorization theorem ⇒ QCD parton model.
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expansion under control, µf should be of the order of the typical hard scale Q – just like in the
case of the renormalization scale µr (which appears in αs(µr) and the renormalized quark masses
mi(µr)). For this reason, it is common practice to set µf = µr ≡ µ for the sake of simplicity. We
shall adopt this simplification except in situations where the distinction between the two becomes
important.
• As mentioned above, the IR singularities which are factored into the partonic fragmentation
functions Da

α(z, m/µ, αs) are universal. (Thus, they have implicit dependence on some regulator
parameter, such as ε in dimensional regularization.) To define Da

α(z, m/µ, αs) precisely, one must
also specify the finite terms which go along with the universal singular pieces. Each specific prescrip-
tion for choosing the finite subtraction defines a distinct factorization scheme for Da

α(z,m/µf , αs),
hence F̂a by implication. {Da

α} are the analogue of renormalization constants in UV renormaliza-
tion. The bare Fα, by definition, is scheme independent. (This fact will be made explicit in the
example we present for the factorization of DIS structure functions, Sec. 4.3.)
• The µ-dependence of these functions is governed by a renormalization group equation (RGE)

µ
∂

∂µ
Da

α(z, m/µ, αs(µ)) =
∑

b

∫
dy

y
P a

b (
z

y
, αs) ·Db

α(y, m/µ, αs) (25)

where P a
b (x, αs) are elements of the (matrix) splitting function, or evolution kernel. They are,

order-by-order, finite in PQCD. The (Mellin) moments of the evolution kernel are the analogue of
the anomalous dimension coefficients in the UV RGE. Eq. (25) is the QCD evolution equation for
the fragmentation functions Da

α(z, m/µ, αs) which plays a key role in the QCD parton model.
• Since all IR singularities of Fα have been separated and factored (subtracted) into the long-
distance Da

α factor, the “hard” structure functions F̂a(x,Q/µ, αs) are IRS, hence calculable (i.e.
finite) order-by-order in PQCD.
These features permit the generalization of the factorization of bare partonic structure functions
(and cross sections) to physical ones.

Hadronic cross sections and the QCD Parton Model

Now, consider the physical one-particle inclusive process e+e− → A(p)+X where A is a hadron (say,
pion). The factorization theorem in this case is inferred from Eq. (24) by replacing the perturbative
(IR singular) partonic fragmentation functions Da

α(z,m/µf , αs) by the non-perturbative (finite)
hadronic fragmentation functions Da

A(z, µf ): 5

FA(z, Q) =
∑

a

F̂a(z,
Q

µf
, αs(µr)) ⊗ Da

A(z, µf ) + O(
m2

Q2
) (26)

where FA is the physical structure function (or cross section) for producing the hadron A, z = 2p0/Q

is the fractional energy carried by the detected hadron, F̂a is the same IRS hard partonic struc-
ture function for producing a parton labeled “a” which enters the partonic factorization formula
(Eq. (24), and Da

A(y, µf ) is the fragmentation function of parton “a” into hadron A with momentum
fraction y. Here, a simplifying notation, ⊗, for the convolution integral has been introduced,

f(z)⊗ g(z) ≡
∫ 1

x

dy

y
f(

z

y
) g(y). (27)

5We suppress the variable m (the hadron and quark mass scales of the problem) in Da
A since, for these non-perturbative

fragmentation functions, the dependence on parameters at the confinement scale is totally unknown.
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The important features of this master equation (cf. also Sec. 4.6) are:
• The factorization theorem in the form of Eq. (26) provides the theoretical basis for the QCD
parton model, as illustrated graphically in Fig. 14. Dropping the remainder term on the RHS of
Eq. (26), it is accurate to the leading twist approximation, as in Eq. (24).
• The transition from the perturbative Eq. (24 to the physical Eq. (26), whereby the perturbatively
calculable (but singular) partonic Da

α are replaced by physical (but uncalculable) hadronic Da
A, is

analogous to that from bare Green functions to renormalized Green functions in UV renormalization
theory where the (UV singular) renormalization constants are absorbed into bare constants to form
the (finite but uncalculable) physical coupling and masses. In this case, Da

A are not calculable in
PQCD because they involve long-distance physics; but they can be determined from experimental
measurements, as we will discuss in the remainder of this review.
• The remarks concerning the µ-dependence of the various factors made about the perturbative
factorization of partonic cross sections, Eq. (24), in the previous subsection also apply to the
hadronic case, Eq. (26).
• In particular, the fragmentation functions (henceforth abbreviated as FFs) satisfy the same RGE,
Eq. (25), with the same IRS evolution kernels P a

b , and the partonic Da
α replaced by the hadronic

Da
A. Thus, if the FFs Da

A(x, µ) are specified at a given scale µ = Q0, Da
A(x,Q0), they are predicted

by PQCD at all scales µ = Q.
We shall see that, the same factorization theorem applies for hadrons in the initial state, with

parton distribution functions (PDFs), fa
b/A(x, µ), appearing in place of the FFs Da

b/A(x, µ). The
PDFs and the FFs together represent our knowledge of the partonic structure of hadrons. PDFs,
in fact, play a more prominent role in particle physics phenomenology. We shall discuss the PDFs
in the context of DIS in Sec. 4.3, after summarizing the similarities and differences of factorization
and renormalization in the next subsection.
The power of the factorization-theorem-based parton model rests with its ability to enable
a wide range of predictions:
• Using as inputs a set of experimental measurements in some limited energy range to the LHS of
Eq. (26) {FA}, the perturbatively calculated hard cross sections {F̂a} on the RHS, together with
the evolution equation as constraint, one can phenomenologically determine the universal functions
{fa

A(x, µ)} and {Da
A(x, µ)};

• Once the PDFs and FFs are known in a limited energy range, they can be extended to arbitrary
high energies by the same evolution equations;
• These universal PDFs and FFs can then be used with any theoretically calculated hard cross
sections {F̂a} as inputs to the RHS of Eq. (26) to make predictions of cross sections for both
Standard Model and new physics processes at arbitrary energies.

This strategy has been used extensively in e+e− collider experiments to determine the FFs;16

and in lepton-hadron and hadron-hadron interactions to determine PDFs, cf. Sec. 6. The resulting
PDFs and FFs are essential input to all calculations of high energy processes.
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4.2 Renormalization, factorization, and scale transformations

In introducing the essential features of IR factorization which form the foundation of the QCD
parton model, we have emphasized the analogies to the well-known UV renormalization theory.
The concept of scale transformation, controlled by renormalization group equations, is fundamen-
tal in both cases. We are interested in physical phenomena at some energy range, say 1 GeV to
10 TeV. In UV renormalization, the renormalized coupling αs(µ) and masses mi(µ) absorb the ap-
parent singularities at ultra-high energies which plague the perturbation series (due to inaccessible
short-distance interactions). Likewise, in IR factorization discussed in the previous subsection, the
hadronic PDFs and FFs absorb the apparent collinear and soft singularities which arise in per-
turbative calculations (due to long-distance interactions at the confinement energy scale, beyond
the reach of PQCD). Thus renormalization and factorization play similar roles – at the opposite
ends of the applicable energy range of the PQCD theory. The underlying ideas of these scale
transformations are summarized in the following illustration.

1019 GeV
(Plank Scale)

10-20 fm

MeV
(Nuclear Scale)

100 fm

Upper end of
exptl. energy ~ 1-2 GeV

M
(huge)

µ or Q
(large/hard)

m, Λ
(soft/confinement)

Infra-red / collinear
Factorization

hides / summarizes
non-perturbative QCD

physics at confinement scale in
fa(x, µF), da(x, µF), ...

Ultra-violet
Renormalization

hides / summarizes
our ignorance of

physics at huge scale in
αs(µR), mi(µR), ...

Renormalization Group Equations (RGE) relates physics at different scales

The importance of Scales -- Renormalization and Factorization

analogies &
correspondences

cf. concluding sec.

Range of physical interest

Figure 15: Graphic illustration of the importance of scale transformations, governed by renormalization groups, both

for controling the ultra-violet divergences in renormalization theory, and for the factorization of soft and collinear

singularities, which is essential for the validity of the QCD parton model.

To help understand the underlying physics, it is interesting to note the exact correspondences
between the bare (partonic) and renormalized (physical) quantities in UV renormalization and IR
factorization in the PQCD formalism. They are explicitly displayed in the following table, using
the generic notation fa

b/A(µ) for both PDFs and FFs in the right column.
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It is interesting to note that, just as the (divergent) renormalization constants are indispensable
in the calculation of (finite) renormalized Green functions and anomalous dimension coefficients
(which control the RGEs) in renormalization theory, so are the (IR singular) perturbative parton
distributions in the calculation of the (IRS) hard cross sections and the splitting functions (which
control the evolution equations) in the QCD-based parton model formalism.

4.3 Factorization in Deep inelastic scattering

The crucial role played by deep inelastic scattering (DIS) of leptons on hadrons in the development
of the parton model and QCD is well-known. Currently, high precision DIS experiments remain as
the mainstay of global QCD analysis. The conventional treatment of DIS in the zero-mass parton
formalism can be found in all modern textbooks and reviews. We shall, instead, try to reinforce the
important ideas behind IRS and factorization as introduced in the previous section by presenting an
unconventional approach to the DIS process in which we keep a small quark mass. A particularly
simple calculation in this case provides a concrete and clear physical picture of the factorization of
collinear singularities which is quite complementary to the formal textbook approaches and to the
discussions of Secs. 4.1-4.2.

Consider the generic leptoproduction process depicted in Fig. 16:

`1 + A −→ `2 + X, (28)

where A is a hadron, `1,2 are leptons, and X represents the summed-over final state hadronic
particles. After the calculable leptonic part of the cross section has been factored out, as done in
Sec. 4.1, we work with the hadronic process induced by the virtual vector boson γ∗ of momentum
q and polarization λ:

γ∗(q, λ) + A(P ) −→ X(PX). (29)
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(a) (b)

Figure 16: (a) Amplitude for the generic inclusive lepto-production process; (b) The structure functions: squared

γ∗ + A → X amplitudes, summed over all final states X.

For the sake of concreteness, we shall explicitly refer to the neutral current interaction with the
exchange of a virtual photon γ∗, although our considerations apply to DIS processes induced by W

and Z as well. In order to focus on the principles of factorization in this section, we shall skip the
details on kinematics, including relations between the cross sections and the structure functions,
until Sec. 5.1 when phenomenological issues are discussed. We shall work with the helicity structure
functions F λ

A(x,Q), illustrated in Fig. 16b, which are the exact analogue of those of the one-particle
inclusive e+e− interaction, cf. Fig. 13b and Eq. (22).

The factorization theorem, 6 states that the inclusive cross section can be written as a convolu-
tion:

F λ
A(Q2, x) =

∑
a

fa
A(x, µ)⊗ F̂ λ

a (x,
Q

µ
,
Q

m
,αs (µ)) + O

(
Λ/Q

)r
(30)

where fa
A is the distribution of parton a inside the hadron A, F̂ λ

a is the perturbatively calculable hard
cross section for γ∗+ a → X, r is some positive number, µ denotes collectively the renormalization
and factorization scales.

In the real world, we have three “light” quarks (u, d, s) with negligible masses and three “heavy”
quarks (c, b, t). The precise definitions of the PDFs and the formulation of factorization will depend
on considerations about the relative magnitudes of the factorization scale µ with respect to the
quark masses (mc,mb,mt), hence are necessarily non-trivial. We shall examine the relevant issues
in Sec. 5.6 on heavy quarks. For the discussion of basic concepts in this section, we shall consider
the simplified case of one quark-parton flavor. We keep a non-zero but small quark mass m (say, the
renormalized MS mass mr(µ)) which serves as a useful cutoff for the collinear and soft singularities
associated with quark partons. We will examine the high energy limit as Q/m → ∞, and study
how the singularities arise, and how are they brought under control by factorization.

The perturbative structure functions

Let us examine the first few terms of the perturbative series for the partonic structure functions
in DIS. The contributing Feynman diagrams are shown in Fig. 17. To LO (i.e. order α0

s), the
gluon structure functions F λ

g vanish; and the quark structure functions F λ
q are calculated from the

6In this form, with m also appearing in F̂ , it is generalized from the conventional zero-mass one, Eq. (26), to the

case including non-zero quark masses (generically denoted by m).17,18 Cf. Sec. 5.6.
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Figure 17: Feynman diagrams contributing to DIS to order αs: (a) LO quark scattering; (b) NLO vertex correction;

(c) NLO quark scattering; and (d) NLO gluon fusion.

square of the simple diagram Fig. 17a. The results are: 7

0F λ
g (x,Q2) = 0,

0F T
q (x,Q2) = δ(x− 1),

0FL
q (x,Q2) = 0FPV

q (x,Q2) = 0,

(31)

where the superscript 0{} denotes LO perturbative results. The perturbative PDFs at this order
are

0f b
a(x,Q2) = δb

a δ(x− 1), (a, b = q, g). (32)

Therefore, the factorization formula, Eq. (30) reduces to the trivial result:

0F λ
a (x,Q2) = 0F̂ λ

a (x,Q2) (33)

with the LHS being given by Eq. (31).

A detailed look at collinear singularity and the physics of factorization
– the gluon structure function

In NLO (order αs), two real (2 → 2) processes, Fig. 17c,d, and one virtual (2 → 1) correction term,
Fig. 17b, contribute. The two real processes involve different final states, hence don’t interfere with
each other. We consider the gluon-fusion process, Fig. 17d, first. The calculation is elementary; and
the results are simple. These contain illuminating ideas about the physics of collinear singularities
and factorization when examined in the proper light. These are what we would like to highlight.

The center-of-mass frame kinematics of the partonic process γ∗(q) + g(k) → q1(p1) + q2(p2) is
illustrated in Fig. 18a and given by the simple formulas:

kµ : ( k, 0, 0, k ),
qµ : (Eq, 0, 0, −k),
pµ
1 : (E, pT 0, pL),

pµ
2 : (E, −pT 0, −pL),

(34)

where
k = (s + Q2)/(2

√
s),

Eq = (s−Q2)/(2
√

s).
.
7An overall constant factor relating to the specific EW couplings, such as e2

q (the electric charge squared), has been

suppressed for simplicity.
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(a) (b)

Figure 18: (a) CM kinematics; and (b) Cut diagrams for the gluon fusion process.

The perturbative calculation consists of evaluating the cut diagram Fig. 18b, which involves
the integral

1F λ
g (Q2, s, m2) =

αs

4π

∑
i

∫
dΓ2

ε
(λ)∗
µ (q, k) ·Nµν

i · ε(λ)
ν (q, k)

(`2
1 −m2)(`2

2 −m2)
(35)

where
Nµν

i = Nµν
i (k, q, p) (Dirac traces),

`2
i −m2 = (k − pi)2 −m2 = −2 k · pi = 2k (E ∓ pL) = 2 k p−i ,∫

dΓ2 ≈ ∫
δ4(k + q − p1 − p2)d3p1 d3p2 =

∫
d cos θ or

∫
dp2

T .

(36)

The results for this calculation (available in textbooks of QED) are finite, — there is no UV or
IR divergences to distract us! 8 They are, modulo an overall factor of αs/2π,

1F T
g (Q2, s, m2) = L

(Q4 + s2)
(Q2 + s)2

− 2(s−Q2)2p
(Q2 + s)2

√
s
,

1FL
g (Q2, s, m2) =

8(Q2 −m2)p
(Q2 + s)2

√
s

+ O(m2

Q2 L),

where L = 2 log[
√

s +
√

s− 4m2

2m
].

(37)

We are interested in these results in the Bjorken limit, hence will assume:

Q2 À m2, s À m2, x =
Q2

2k · q =
Q2

s + Q2
≈ O(1). (38)

In this limit, the “finite” partonic structure function 1F T
g (x, Q2,m/Q) contains the large logarithm

L = 2 log

[√
s +

√
s− 4m2

2m

]
−→ log

s

m2
= log

Q2

m2
(
1
x
− 1). (39)

Since αsL ∼ log(Q/m)/ log(Q/Λ) ∼ O(1) in the Bjorken limit, this will render the perturba-
tive expansion useless for sufficiently large Q/m. Thus the (bare) partonic structure function
1F T

g (Q2, s,m2) is not IRS. We see the emergence of the IR “singularity” in a different guise –
in the IR unsafe large logarithm log(Q/m). (We note that 1FL

g (x,Q2,m/Q) is finite in the limit
m/Q → 0.)

The key question is therefore: Can the potentially troublesome large logarithms be isolated
and controlled? The answer is yes. The ideas underlying this answer echo those of the zero-mass
theory outlined in the previous subsections.
• The large logarithm is due to the collinear region of the momentum phase space, hence is asso-
ciated with long-distance physics in coordinate space;

8That is the reason for choosing to discuss this example.
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• The long-distance part is universal; it can be systematically separated (factorized) and resummed
into parton distributions;
• After this part is factored out, the remainder (the short-distance part) is free of large logarithms
in the log(Q/m) →∞ limit: it becomes the IRS hard-scattering cross section (or Wilson coefficient,
in historical parlance).

We show how this works from the analytical results, and present the physical picture behind
these results. For this purpose, let us examine the integral of Eq. (35),

1F T
g (x,mQ ) =

∫
dΓ2

N

(`2
1 −m2)(`2

2 −m2)
=

∫
dp2

T

N

(2k · p1)(2k · p2)

=
∫

dp2
T

N ′

(E − pL)(E + pL)
=

∫
dp2

T

1
E2 − p2

L

N ′

=
∫ p

0

dp2
T

p2
T + m2

N ′(pT , x . . .) =
∫ log(s/4m2)

0
dη N ′(η, x . . .)

(40)

where η = log(p2
T + m2)/m2, and N ′ is well behaved in the limits pT , η → 0 and m → 0. To see

the underlying physics, examine the integrand as a function of pT and of η, as shown in Fig. 19.
The sharp peak at pT = 0 (pT ∼ m) is transformed into a broad plateau in η space. We can now
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Figure 19: Behavior of the integrand of Eq. (40) as a function of pT (a), and η (b).

see the origin of the large logarithm log(Q/m). First expand the regular function N ′ around
η = 0 (pT = 0) and m = 0,

1F T
g (x, m

Q ) = N ′(x, 0, 0)
∫ log(s/4m2)

0
dη + F̃ (x,

m

Q
)

= αs
2πP q

g (x) log s
4m2 + F̃ T

g (x, m
Q )

(41)

where one can easily verify P q
g (x) = x2 + (1− x)2. The remainder F̃ T

g (x,mQ ) is well-behaved in the
Bjorken limit m

Q → 0. The large logarithm term is seen to originate from the pT ∼ m peak (the
collinear kinematic configuration) which corresponds to long-distance interactions in space-time.
In the η variable, the large logarithm manifests itself simply as the available kinematic range – the
plateau gives the major contribution to the integral.

The separation of long- and short-distance physics and the meaning of the factor-
ization scale µf is particularly easy to understand in this picture. This is illustrated in Fig. 20.
As shown in this picture, the boundary of the two regions is naturally chosen to be at pT = µf ∼ cQ

where c is an arbitrary constant of order 1. We note:
• If Q/m À 1, the plateau is flat and wide – of the order log(Q/m). The boundary can be chosen
anywhere near the upper end of the plateau.
• A shift of the value of µf results in shifting a finite term between the long/short distance pieces;
the sum, i.e. the bare (or “physical”) structure function, is independent of the choice of µf by
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Figure 20: Large log(Q/m) arises from the width of the plateau, which corresponds to the collinear, pT ∼ m, region

in pT space. pT = µf ∼ cQ separates the collinear region from the hard-scattering region. A finite shift in µf does

not affect the factorization of long- and short-distance physics.

definition. That is, the long/short distance factors are scale (and scheme) dependent; but the net
result is scale (and scheme) independent.
• The long-distance (pT ∼ m) piece is universal – as seen from Eq. (41) and the above illustration,
it arises from integrating over the featureless plateau and is independent of details of the NLO
process.
• The short-distance (pT ∼ Q) piece reflects the specific dynamics of the NLO process. But, with
the plateau (collinear region) subtracted, it is free from the large logarithm log(Q/m) which plague
the perturbative expansion when Q À m – i.e. it is IRS.

The ideas represented by Fig. 20 can be implemented analytically by rewriting Eq. (41) as

1F T
g (x,

m

Q
) = P q

g (x) log
µ2

f

m2
+ P q

g (x) log
s

4µ2
f

+ F̃ T
g (x,

m

Q
)

= P q
g (x) log

µ2
f

m2
+ 1F̂ T

g (x,
Q

µ f

,
m

µf
).

(42)

The difference between Eq. (42) and Eq. (41) appears to be slight, but it is far-reaching in principle.
Only with the introduction of the intermediate factorization scale µf , the two terms on the RHS
of Eq. (42) acquire the properties discussed in the above list; and this feature is crucial for the
validity of the factorization theorem in general, to all orders of perturbation theory. We also see
from Eq. (42) that
• The µ-dependence of the long-distance piece is given by the universal function P q

g (x) which is
the familiar g → q splitting function.
• The short-distance piece has a finite limit as m/Q approaches zero; indeed, in this limit it
reproduces the conventional zero-mass theory (say, MS result), provided attention is given to
match the schemes: 1F̂ T

g (x,m/µf , Q/µf ) → 1F̂ T
g (x,Q/µf )|MS

m=0.
9

We can now collect the results obtained so far and write them in a form suitable for identifying
the perturbative parton distributions and hard cross sections. To order αs, the perturbative version
9For light quarks, it is natural to set m = 0 at this stage (or to simply use the zero-mass formalism). For heavy

quarks, it is useful to not set m = 0 in the hard cross section, cf. Sec. 5.6.
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of Eq. (30) (cf. also Eq. (24)) for the partonic process γg → qq̄ suggests that we write

1F λ
g (x,

Q

m
) = 1f q

g ⊗ 0F̂ λ
q + 0fg

g (x)⊗ 1F̂ λ
g . (43)

With 0F̂ λ
q and 0fg

g (x) given by Eqs. 31 and 32, we can identify the NLO parton distribution

1f q
g (x,

m

µ
, µ) =

αs(µ)
2π

P q
g (x) log(

µ2

m2
). (44)

And the formula for the IRS hard cross section is given by

1F̂ λ
g (x,

Q

µ
,
m

Q
) = 1F λ

g (x,
Q

m
) − 1f q

g ⊗ 0F̂ λ
q . (45)

Since 0F̂L
q = 0, this implies 1F̂L

g = 1FL
g (cf. Eq. (37)). For λ = T , we reproduce Eq. (42.

Combining the LO formulas (31)–(33) with the NLO Eq. (43), we obtain the multiplicative
factorization formula to order αs:

F λ
g (x,

Q

m
,αs(µ)) = fa

g (x,
m

µ
, αs(µ)) ⊗ F̂ λ

a (x,
Q

µ
,
m

µ
, αs(µ)), (a = q, g), (46)

where a summation over the repeated index “a” is implied, i.e. the RHS of Eq. (46) should be
interpreted as a generalized matrix multiplication in parton label space as well as in the convolution
integral variable.

Full factorization in NLO and beyond

We need to extend the results obtained for the gluon-fusion contribution (to the DIS structure
function) to the general case. Having seen the most basic ideas illustrated by the above example,
we shall discuss the rest of the program only in qualitative terms.

At order αs, one still needs to calculate the contributions from the vertex correction and the
quark-scattering diagrams (Fig. 17b,c) to the partonic structure function 1F λ

q (x, Q
m , αs(µ)). The

results are more complicated than above: in addition to mass-logarithms, they contain UV and IR
singularities. These can be treated in the standard way: one applies UV renormalization (say, using
dimensional regularization and MS subtraction) to absorb the UV divergences into renormalized
masses and coupling; then combines the virtual and real contributions to cancel the IR singularities.
The net results are similar to 1F λ

g (x, Q
m , αs(µ)) for the gluon case, except that, in addition to the logs

of quark mass m, one also encounters singularities (in the form of 1
ε in dimensional regularization)

due to long-distance interaction of the massless gluon. For the same physical reasons described
above (and in Sec. 4.1-4.2), both of these long-distance contributions are universal, hence can be
written in the factorized form, just as for F λ

g (x, Q
m , αs(µ)), Eqs. (42) and (43).

Going beyond order αs, one can show that factorization, in the sense described above, holds
to all orders of perturbative theory, for the DIS structure functions.19 The proof involves
showing that a set of universal parton distributions exists which will absorb all the collinear and
soft singularities encountered in the calculation of the relevant partonic (bare) structure func-
tions F λ

a (x, Q
m , αs(µ)) (a = all parton flavors). Although the underlying physical ideas are rela-

tively simple, as emphasized in the last two sections, the mathematical proofs are technically very
demanding.7,15,19 For this reason, actual proofs of factorization only exist for a few hard processes;
and certain proofs (e.g. that for the Drell-Yan process) stayed controversial for some time before
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a consensus were reached.15 Because of the general character of the physical ideas and the mathe-
matical methods involved, however, it is generally assumed that the attractive quark-parton model
does apply to all high energy interactions with at least one large energy scale.

The perturbative factorization theorem, valid to all orders of αs and for any number of quark
flavors, is thus a simple generalization of Eq. (46). In the case of DIS structure functions:

F λ
b (x,

Q

m
,αs(µ)) = fa

b (x,
m

µ
, αs(µ)) ⊗ F̂ λ

a (x,
Q

µ
,
m

µ
, αs(µ)) (a, b = qi, g). (47)

The first factor on the RHS, {fa
b (x, m

µ , αs(µ))}, contains all the collinear and soft singularities of

the original partonic structure functions {F λ
b (x, Q

m , αs(µ)}, in particular, all large logarithms of the
form αn

s logn(m/µ) to arbitrary order n. This infinite tower of large logarithms are said to have
been resummed into the parton distributions {fa

b }.
As mentioned in Sec. 4.1, the perturbative factorization theorem provides the theoretical basis

for the QCD parton model formula used in physics applications. For DIS, we simply replace the
resummed partonic distribution function by the hadronic parton distribution functions, and obtain:

Figure 21: DIS structure functions at high energies: factorization theorem ⇒ QCD parton model. See text for

comparison with Fig. 14.

F λ
A(x,Q, αs(µ)) = fa

A(x, µ, αs(µ)) ⊗ F̂ λ
a (x,

Q

µ
, αs(µ)), (a = qi, g). (48)

This provides the basis for the QCD parton picture which is often shown as in Fig. 21. This
representation, while conveying the basic ideas conveniently, leaves implicit the squaring of the
γ∗A → X amplitude and the summing over X. The complete picture should be like Fig. 14 in
Sec. 4.1.

To use this formula, one needs the perturbative hard cross section F̂ λ
a (x, Q

µ ,

αs) (“Wilson coefficients”). To calculate these, one reverts back to the partonic cross section
formula, such as Eq. (46), which can be written, in matrix notation:

{F̂ λ}(x,
Q

µ
, αs(µ)) = f−1(x,

m

µ
, αs(µ))|

PQCD
⊗ F λ(x,

Q

m
,αs(µ))|

PQCD
(49)

where we used {} to denote a matrix in the suppressed parton flavor label. Both perturbative
factors on the RHS are to be calculated, independently, to the same order of perturbation theory,
using the same renormalization scheme. As mentioned earlier, F λ(x, Q

m , αs(µ)) is, by definition,
independent of the choice of factorization scheme and scale. These only come in when one defines
the perturbative partonic parton distributions fa

b (x, m
µ , αs(µ)). Equation (49) shows explicitly that

the hard cross section F̂ λ
b (x, Q

µ , αs(µ)) inherits the choices of factorization scheme and scale made
for the parton distributions. Thus, we need to discuss the general definition of the universal parton
distributions, independent of any specific process.
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4.4 Parton distribution functions

Historically, factorization was formulated first in moment space, in terms of Mellin transforms of
the structure functions, using Wilson’s operator product expansion. In that formulation, parton
distribution functions are the inverse Mellin transform of the matrix elements of an infinite tower of
local operators. In the more physical (Bjorken) x-space formulation we are adopting, an equivalent
definition of PDFs can be given in terms of matrix elements of bi-local operators on the light-cone.20

The distribution of quark “a” in a parent “A” (either a hadron or another parton) is defined as

fa
A(ξ, µ) ≡ 1

2

∫
dy−

2π
e−iξp+y−〈A|ψ̄a(0, y−,0)γ+Fψa(0)|A〉. (50)

|A〉 represents the parent state A, with the momenta aligned so that pT
a = pT

A = 0 and p+
a /p+

A = ξ.
The operator in the middle,

F = P exp(−ig

∫ y−

0
dz−A+

a (0, z−,0) ta),

ensures the gauge invariance of the definition. In the physical gauge, A+ = 0, F becomes the
identity operator, and fa

A(ξ) becomes manifestly the matrix element of the number operator for
finding quark “a′′ in A with momentum p+

a = ξp+
A and pT

a = 0.
The definition for the gluon distribution is similar; one replaces the quark field by suitable

combinations of the gluon field Aµ, cf. Ref. 20. The µ dependence, shown on the LHS, arises
from the need to regulate the divergences encountered in the perturbative calculation of the “bare”
matrix element on the RHS. For the conventional zero-mass quark formalism, it is convenient
to use dimensional regularization and MS subtraction which regulate both the UV and the IR
singularities at once. In that case, one obtains PDFs defined in the MS scheme, and µ is just the
scale variable introduced by dimensional regularization. As emphasized in our general discussions
about factorization, in principle, one is free to choose any well-defined scheme in defining PDFs,
as long as consistency is maintained with the hard cross section. Any such choice is related to the
MS scheme by a finite renormalization.

The PDFs, like the fragmentation functions, satisfy a RGE – the QCD evolution (or DGLAP)
equation,

d

d ln µ
fa

A(x, µ) =
∑

b

∫ 1

x

dξ

ξ
P a

b (
x

ξ
, αs(µ)) f b

A(ξ, µ). (51)

Because P a
b is independent of the target A, it can be calculated order-by-order in perturbation

theory from the partonic PDFs,

Pab(z, αs(µ)) = P
(1)
ab (z)

αs(µ)
π

+ P
(2)
ab (z)

(
αs(µ)

π

)2

+ · · · . (52)

P
(1)
ab (z) and P

(2)
ab (z) have been known for a long time. P

(3)
ab (z) has not yet been completely calculated,

but its large and small x limits, as well as many moments are known.21 These results have been
used extensively in determining the µ dependence of the non-perturbative hadronic PDFs and FFs.

4.5 Scale-dependence of the factorization theorem based parton model

Although, in principle, the factorized formula for F λ
A(x,Q) should be independent of the scale µ,

this is not true if F̂ λ
A and Pab are only calculated to some finite order in the perturbative expansion.
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In other words, at finite order, F λ
A is actually a function of µ, in addition to (x,Q). For the

perturbative results to be reliable, the variation with respect to µ has to be under control. It is
easy to see that, if the calculation has been carried out to order αn

s , then

µ
d

dµ
F

(n)
A (x, Q, µ) ∼ O(αn+1

s ). (53)

Equation (53) can be used as a tool: when the order αn+1
s calculation is not available, the

µ-dependence of the order αn
s result, F

(n)
A (x,Q, µ), gives an indication of the size of the next order

term. In practice, the size of the µ-dependence of NLO calculations of various hard processes vary
greatly. It is small for DIS and DY processes, indicating these results are likely to be reliable. But,
it turns out to be quite large for direct photon and heavy quark production, indicating that, for
these processes, important contributions to the cross sections are still missing from the two leading
terms in the expansion. On one hand, these results clearly have important phenomenological
consequences, as we will discuss in the later sections. On the other hand, they pose interesting
theoretical challenges to understand the source of these shortcomings.

4.6 Three faces of the master formula of QCD parton model

As mentioned in Sec. 4, the applications of PQCD largely rely on the factorization-theorem-based
parton model of high energy interactions. On one hand, by applying this picture to a set of SM
processes at currently available energies, it allows us to probe hadron structure and determine the
universal PDFs and FFs. This is represented by writing the factorization formula, Eq. (48), in the
generalized matrix notation, as

{fA}(x, µ) = {F̂λ}−1(x,
Q

µ
, αs(µ))|

PQCD
⊗ F λ

A(x,Q)|expt (54)

where the sum over λ on the RHS symbolizes the use of a set of complementary experimentally
measured quantities, such as DIS structure functions and hadron-hadron hard scattering cross
sections. We shall refer to this program as global QCD analysis.

On the other hand, making use of the universal PDFs and FFs so determined, we can predict
the cross sections for both SM and New Physics processes at any energy that may be of interest
now or in the future, using the original Eq. (48).

To summarize: the significance of the factorization theorem is underlined in the remark-
able fact that all three facets of the same equation play an important role in our physics program:
• Applications: in the form Eq. (48), to predict all SM and New Physics processes, using theoretical
hard cross sections and the phenomenological PDFs and FFs as input;
• Theory: in the form Eq. (49), to derive the IRS hard cross sections, using calculations of the
partonic cross sections and partonic PDFs (the latter as “subtractions” to remove the collinear and
soft singularities), in perturbative QCD, to some order of αs; and
• Phenomenology: in the form Eq. (54), to determine the PDFs and FFs in global QCD analysis,
using the hard cross sections and experimental data as input.

Thus, the factorization theorem formula deserves the alternative name: the master formula of
the QCD parton model.

5 Hard Processes in Hadron Interactions

We shall briefly survey in this section the common SM hard processes in lepton-hadron and hadron-
hadron collisions. Treatment of these processes in the traditional zero-mass QCD parton model can
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be found in Refs. [4,5,6]. We will therefore limit ourselves to a relatively informal perusal of issues
either of historical significance, or of unusual physical interest, or of particular relevance to current
PQCD research – all to lay the ground work for the review of the phenomenological program of
global QCD analysis in the next section.

5.1 Deep inelastic scattering

The most important of the hard processes, both conceptually and phenomenologically, is inclusive
DIS of charged and neutral leptons on hadrons,

`1(k) + A(p) → `2(k′) + X

with the exchange of a vector boson V . Cf. Fig. 16a. The conceptual aspect has already been
discussed in Sec. 4.3 in the context of the principle of factorization. We shall address the relevant
phenomenological issues in this section.

Preliminaries The standard variables used to describe this process are:

qµ = kµ − k′µ ; Q2 = −q2,

x = Q2/2p · q ; y = p · q/p · k = E − E′,
ν = q · p ; W 2 = (q + p)2 = 1−x

x Q2 + m2
A.

(55)

The cross section is expressed in terms of the leptonic and hadronic tensors as:

dσ =
4α2

s

d3k′

2|k′|
1

(q2 −M2
V )2

Lµν(k, q) Wµν(p, q) (56)

where MV is the mass of the exchanged vector boson. For current lepton-hadron scattering phe-
nomenology, we need only to consider V = γ∗,W+, W−. Then there is no interference term in
any of the neutral current (γ∗) or charged current (W±) interaction channels. The lepton ten-
sor Lµν as well as the hadron tensor Wµν , expressed in terms of invariant structure functions
Fi(x, Q), i = 1, 2, 3, are given in all standard references. We shall use the helicity basis which is
more physical and somewhat less familiar. In this basis,

Wλσ(q, P ) =
1
4π

∑

X

〈P |ε∗λ · J†|PX〉(2π)4δ(4) (P + q − PX)〈PX |εσ · J |P 〉 (57)

where
∑

implies a sum over all final hadronic states as well as averaging over the initial target spin,
and ελ represents the polarization 4-vector of the vector boson with helicity λ. In most cases, only
the diagonal elements of the tensor F λ ≡ Wλλ(q, P ) contribute to the measured cross section. In
analogy to Eq. (23), the cross section formula for the DIS process acquires an elegant and precise
form (valid at all energies):

dσ

dxdy
= N

{
g2
+ [ FT (1 + cosh2 ψ) + FL sinh2 ψ ] + g2

− [ FPV coshψ]
}

,

N =
yQ2

2πn`

g4
V

(Q2 −MV )2
, (58)

where FT = 1
2(Fλ=+ + Fλ=−), FL = Fλ=0, and FPV = F− − F+, n` = {2, 1} for incident {charged

lepton, neutrino} respectively, gV is the gauge coupling of the vector boson V , MV is its mass,
g2
+/− are the lepton parity conserving/violating electroweak coupling combinations g2± = g2

L ± g2
R
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(R/L = right/left-handed). And ψ is the hyperbolic angle of the Lorentz boost connecting the
lepton vertex to the hadron vertex in the Breit frame (“rest frame” of the space-like vector boson,
q0 = qT = 0, q3 = Q), which is the analogue of the angle of rotation θ between the lepton and hadron
vertices in the rest frame of the time-like vector boson in e+e− scattering, as seen in Sec. 4.1. The
hyperbolic angle ψ is related to the familiar kinematic variables by

coshψ =
E1 + E2√
Q2 + ν2

mA → 0−→−→ (2− y)
y

. (59)

The relations between the helicity and invariant structure functions are relatively simple:

Transverse : FT = F1,

Longitudinal : FL = −F1 + (1 + Q2/ν2)
F2

2x
∼ −F1 +

F2

2x
,

Parity violating : FPV =
√

1 + Q2/ν2 F3 ∼ F3,

(60)

where the last column is valid only in the Bjorken limit.

Phenomenology Extensive deep inelastic scattering experimental data have been accumulated
from all major laboratories (SLAC, Fermilab, CERN, HERA), using electron, muon, neutrino,
and anti-neutrino beams on a wide variety of targets.22 The accuracy of these data has steadily
improved; and the kinematic range they cover has steadily expanded. (Cf. Sec. 6.) These data
form the bedrock on which global QCD analysis is built.

On the theory side, the hard cross section has been calculated to NNLO (2 loop). As mentioned
in Sec. 4.5, although the corresponding calculation for the evolution kernel has not yet been com-
pleted, much of its behavior is known. The important thing is that the available theoretical results
show that the perturbative results are very well-behaved. Except at very small x (where the process
becomes effectively a two-scale problem because of the large log(1/x) terms), the convergence of
the perturbative expansion is good, and the scale-dependence is small.

Although PQCD cannot predict the x-dependence of the PDFs, the evolution equation, Eq. (53),
does allow us to calculate the Q-dependence, with some input PDFs at a given Q0. This Q-
dependence has been verified by experiment to a very high degree of accuracy. Figure 22 gives
an illustration of the quality of this remarkable agreement in neutral current F2(x,Q) structure
function measured over a large range of x and Q by fixed target experiments SLAC, BCDMS, NMC
and collider experiments H1, ZEUS; as well as in charged current F3(x,Q) measured by the CCFR
neutrino experiment.

With precision data covering a wide kinematic range and reliable theoretical predictions, PQCD
phenomenology in DIS is a very rich subject. In addition to the example given above, one can test
a number of QCD sum rules; make precision measurements of the fundamental coupling αs; study
semi-inclusive final state channels; as well as the best known application – as the main input to
global QCD analysis in order to determine the quark and gluon content of hadrons, in particular
the nucleon. For a review of DIS phenomenology, cf. Ref. 22.

5.2 Hadron-hadron collisions in general

For hadron-hadron collisions, we consider the inclusive production of massive vector bosons γ∗/W/Z,
heavy quarks Q, high pT direct photons γ, and high pT Jets. These processes can be generically
represented by A(pA) + B(pB) → H(q) + X, where H is the detected “hard” particle, X is “any-
thing,” and the arguments are the associated moment variables. In these processes, it is convenient
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Figure 22: Comparison of DIS data with NLO PQCD calculations: (a) F2 data from several neutral-current experi-

ments; (b) xF3 data from the CCFR experiment.

to start with the CM frame with z-axis along the beam of the colliding hadrons, and adopt the
light-cone momentum components (cf. Eq. (10)). For a particle with mass M and momentum q:
qµ = (q+, q−,q), define the rapidity variable

y =
1
2

log
(

q+

q−

)
, (61)

then
qµ = (ey

√
(q2 + M2)/2, e−y

√
(q2 + M2)/2, q). (62)

Transformation under a boost along the z-axis (q+ → eωq+, q− → e−ωq−, q → q) results
in a uniform translation in the rapidity variable y → y + ω. This is convenient, since the boost
invariance of many physical quantities is simply expressed as the independence of those variables
with respect to the absolute value of y (i.e. only rapidity differences matter).

Now we turn to the individual processes.

5.3 Lepton-pair and W/Z production (Drell-Yan processes)

The Drell-Yan process A + B → γ∗/W/Z + X is depicted in Fig. 23, along with the associated
factorization-based parton picture at higher energies. We shall use the symbol V to represent
the (virtual and real) vector bosons collectively. Let M be the mass of the vector boson W/Z or
the invariant mass of the lepton pair (M2 = q2), xA = ey

√
M2/s, xB = e−y

√
M2/s, then the

factorization formula reads

dσ

dy
=

∑

a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa
A(ξA, µ) f b

B(ξB, µ)
dσ̂ab(µ)

dy
+O((

m

M
)p). (63)
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Figure 23: Factorization-based parton picture for the Drell-Yan process.

The factorization formula for the DY process is among the few hadron-hadron process
which has actually been proved.
The complication (over those for lepton-lepton and lepton-
hadron processes) arises from initial state strong interactions,
as illustrated in the figure to the right – factorization does not
hold graph-by-graph, as shown in the example of Sec. 4.3. The
validity of factorization is, however, saved by the intricate inter-
play between different graphs connected by soft gluons which re-
flect the physical requirements of unitarity, causality, and gauge
invariance of the underlying theory.15

The DY process has been pivotal in the development of the QCD parton model. The dominant
contribution to the DY cross section comes from the LO quark-anti-quark annihilation partonic
process qq̄ → V , Fig. 24a. The qualitative agreement between the measured DY cross sections with

Figure 24: Feynman diagrams for (a) LO, and (b) NLO partonic processes contributing to the physical DY process.

the predictions of the LO (simple parton model) formula (Eq. (63) in order α0
s), using PDFs

determined from DIS experiments, was considered a major success for the original parton model
idea, since it was decisive experimental evidence for the idea of factorization involving universal
parton distributions in two entirely different processes.

The NLO partonic processes are qq̄ → V g and gq → V q (“Compton scattering”), as shown
in Fig. 24b,c. Their contribution to the physical cross section turned out to be rather large – the
“K-factor” ≡ NLO

LO (a common measure of the relative significance of the NLO contribution) is of
the order ∼ 2.0. This posed two potential problems for the QCD parton model:
(i) doubt was cast on the trustworthiness of the perturbation expansion;
(ii) the “agreement” between the first naive prediction and experiment mentioned above was put
in jeopardy by including the NLO contribution.
These problems were resolved: (i) the origin of the large NLO contribution was identified, and
understood not to be a problem for higher order terms (this has been confirmed both by the actual
calculation of the NNLO term, and by the fact that the NLO results are relatively insensitive to
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variations of the factorization scale, cf. Sec. 4.5); and (ii) the “disagreement” turned out to be
actually closer to a factor of 3 – which was, however, exactly what was needed to bring theory and
experiment into agreement, since the initial prediction predated the advent of the color degree of
freedom. In other words, the comparison of theory with experiment in DY turned out to be one of
the crucial elements in support of the color quantum number!

Current NLO and NNLO calculations of DY cross sections are in perfect agreement with the
most recent data; and these play an important role in the global QCD analysis program, cf. Sec. 6.
In Fig. 25, we show some typical results: the comparison between two lepton-pair production
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MRST98 curves; and (b) σpd/2σpp (E866) vs. CTEQ5 curve.

experiments from Fermilab, E605 on dσ/dydQ2 and E866 on 2σpp/σpd, with a NLO QCD global
fit.23

In addition to the rapidity distribution (Eq. (63)) one can calculate the qT distribution of the
produced vector boson. Since the naive Drell-Yan mechanism produces only qT = 0 vector bosons,
the leading contribution at finite qT comes in at order αs, due to the diagrams of Fig. 24b,c. The
perturbatively calculated results for these contributions, however, diverge as qT → 0. This kind
of singularity appears as logarithm terms of the form log(qT /M), which becomes large when the
two physical energy scales qT and M become very disparate, e.g. when qT /M ¿ 1 (qT ¿ M).
The possible ways to control this apparent singularity are rooted on ideas discussed in the previous
sections:
• By integrating over qT , and combining with the contributions from virtual corrections to the qq̄

annihilation subprocess, the dσ/dy distribution is finite. This is reminiscent of the cancellation of
collinear and soft divergences in IRS quantities in e + e− collision discussed in Sec. 3.3.
• On the other hand, if we are actually interested in the qT distribution at values of qT ¿ M , the
large logarithm terms (of the form αn

s log2n−m(qT /M) at the n-loop level) must be brought under
control by resummation. 10 This was the first example of the need for resummation in a multi-
scales problem. The theory and phenomenology of QT -resummation for the DY process are, by
now, well established.24 Figure 26 shows the comparison of the W pT distribution measured at the
Tevatron collider compared with resummed QCD calculations. We have encountered a different
10This reminds us of the resummation of large logs of the type αn

s logn(m/µ) to obtain the parton distributions, cf.

Sec. 4.3. The general idea may be similar, but the underlying physics is different. In this case, these large logs resum

into the Sudakov form factor.24
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Figure 26: Comparison of Z qT distribution at the Tevatron with pT -resummed PQCD calculations: (a) low qT

region; (b) full qT range. Figure by C. Balas in Ref. 29

type of resummation – the threshold resummation – in our brief discussion of the thrust distribution
in Sec. 3.4; the issue will also return in the next subsection.

5.4 Direct photon production

Direct photon production, A+B → γ +X, is an interesting process for PQCD, provided the (real,
zero-mass) photon is observed at high transverse momentum, qT À ΛQCD.

In principle, then, qT provides the hard scale
which makes asymptotic freedom and factoriza-
tion applicable. The leading order partonic pro-
cesses for this reaction are shown in the diagrams
to the left. They are the same ones shown as
Fig. 24b,c for the DY process.

Historically, direct photon production has been regarded as a primary process to probe the
gluon parton distribution of the nucleon, because the cross section is directly proportional the
initial state gluon at leading order – in contrast to the situation in DIS and DY where the gluon is
involved only at NLO. Unfortunately, as we have learned over the past 15 years, there are a number
of special circumstances that complicate the situation; hence the original expectation remains an
unfulfilled goal. We mention three of these.
• Since we are discussing inclusive photon production, in addition to the

partonic processes involving a point-like (“direct”) photon shown
above, there is an additional contribution from hadronic (quark
and gluon) subprocess with one of the final state partons frag-
menting into a photon, such as shown in the accompanying
graph.

This hadron-like component of the produced photon is sometimes called by the (rather con-
fusing) name “resolved photon”; and the contribution from this new mechanism is called the
bremsstrahlung contribution. It can be shown that, at higher orders, the distinction between
the two components is not unique; they are inter-related and dependent on the factorization scheme
and scale choices. The presence of this additional contribution complicates both the theory and
the phenomenology.
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• Calculations show that, in energy ranges relevant for current fixed-target experiments, the NLO
contribution to the direct photon cross section is quite large relative to the LO one; the K-factor
is of the order ∼ 2. In addition, the scale-dependence of the results, even at NLO, is quite sig-
nificant, indicating that important contributions to the perturbation series are still missing (cf.
Sec. 4.5). Both imply that the NLO calculation does not provide a reliable theoretical basis for
quantitative phenomenology. Recent calculations indicate that the scale-dependence is reduced by
resummation.25 That is still an evolving field of research.
• The qT spectrum, both theoretically and experimentally, has a very steep dependence on qT .
In the QCD parton model, this fact makes the theoret-
ical prediction extremely sensitive to small broadening
of the initial state parton transverse momentum (usu-
ally denoted by kT ) away from the parton-model value
of kT = 0. This effect is shown in the accompany-
ing illustration. The net effect on the pT of the γ is
to lift and steepen the curve by an amount depend-
ing on the steepness of the original spectrum and on
the amount of kT broadening applied to the parton.
Phenomenologically, it was noticed a few years ago26

that measured pT spectra from fixed-target to collider
experiments exhibit a systematic pattern of deviation
from those expected from NLO PQCD calculations, in
a manner consistent with kT broadening effect. This
pattern is shown in Fig. 27a.
A recent high statistics experiment, E706 at Fermilab, reinforced this observation. The measured
cross section is approximately a factor of 3 larger than the NLO calculation; and a kT broadening
effect of the order of 1.3 GeV convoluted with the NLO calculation brings about a good agreement,
as shown in Fig. 27b.
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ratio, exhibiting the systematic pattern of stiffening of the measured qt spectrum;26 (b) Recent E706 data compared

to NLO calculation, with and without kT broadening effect.27

It is natural to think of a kT broadening effects, as proposed in Ref. 26, since the parton
model value kT = 0 is only an idealization brought about by factorization — recall Eqs. (41) and
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(42) and Fig. 20. In particular, it is well-known that multi-soft-gluon emissions can produce just
such an effect. Theoretically, it is precisely these effects that give rise to the qT -resummation. This
realization has stimulated a great deal of theoretical activity in recent years on putting resummation
theory for direct photon production on a firmer basis.25 The theory and phenomenology both remain
as one of the most active areas of current QCD research.
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5.5 Inclusive jet production

The inclusive jet production process, A + B → jet + X, can
be represented by the parton model picture as shown here. Al-
though, at high energies, the appearance of “jets” in the ex-
perimental detectors appears to be obvious to the eye as shown
in Sec. 2.1, for quantitative comparison between theory and ex-
periment, one must adopt specific jet algorithms which are IRS
(hence calculable in PQCD). The corresponding formula is

dσ

dET dη
≈

∑

a,b

∫ 1

xA

dξA

∫ 1

xB

dξB fa
A(ξA, µ) f b

B(ξB, µ)
dσ̂ab(µ)
dET dη

(64)

where η is the pseudorapidity defined as η = − log(tan(θ/2)) ≈ y if q+ (or q−) À m.
There are many viable definitions of jet algorithms. Historically, they fall into two broad

categories:4,28 (i) cone algorithms, based on energy deposition in specified solid angle areas; and
(ii) cluster algorithms, based on combining particle momenta with appropriate IRS recipes. In
the former category, in addition to the original Sterman-Weinberg prescription, the “Snowmass
accord” algorithm (and modified versions of it) have been used extensively in hadron-hadron colli-
sion studies. In the latter category, the JADE algorithm and its modern variants, such as the kT

(Durham) algorithm, have been the most used in e+e− jet studies. Although all IRS jet algorithms
are equally valid in principle, the modern definitions have been designed to be more “physical”
(e.g. jet separations agree more with intuitive pictures of jets) and more efficient to implement (so
that, e.g. higher-order corrections are minimized, or resummations are easier to formulate, . . . ).

The NLO PQCD calculation of the one jet inclusive cross section is known to be quite reliable.
Scale dependence of the calculated results are mild over most of the kinematic range. Experimen-
tally, inclusive jet production at the Tevatron provides the highest reach in momentum scale, ∼ 500
GeV, of all high energy hard scattering, hence probes hadron structure at the shortest distance
scale. Figure 28 shows the comparison of data from the CDF experiment with PQCD calculations
based on the CTEQ parton distributions. The bottom part compares the data with two sets of
candidate parton distributions. Considering the systematic errors on the experimental data points,
indicated near the bottom of the plot, both are consist with data. This is generally reassuring.
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Figure 28: Comparison of one jet inclusive cross-section from the CDF experiment with two CTEQ5 calculations.

On the other hand, it was noticed that the trend of the data shows an “excess” over the
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CTEQ5M curve which has a conventional type of gluon distribution. This is highlighted in the top
part of the plot in the form of the ratio of Data/Theory. This excess initially caused a great deal of
excitement in the HEP community, because, if true, it would indicate the emergence of some new
physics signal at the highest energy scale explored by HEP experiments. However, the existence
of an alternate set of PDFs, CTEQ5HJ, which can bring about better agreement between theory
and experiment (dashed lines), means that we need more constraints on the PDFs before signals
for new physics can be unambiguously established. Figure 29 shows more recent measurements on
inclusive jet pT distributions at several different η bins (double differential cross-section) by the D0
collaboration. This data set is very precise, and the comparison to NLO QCD calculations based
on the CTEQ4HJ PDFs (which are very similar to CTEQ5HJ) shows impressive agreement.
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Figure 29: Double differential inclusive jet cross-section from the D0 experiment in five η bins, plotted against pT .

The curves are NLO QCD calculations based on the CTEQ4HJ distributions.

In addition to one-jet inclusive cross section, PQCD can make predictions on jet shapes,
and multi-jet cross sections. Much progress has been made in this direction with extensive ex-
perimental measurements (at e+e−, ep, and p(̄p) colliders) and ever-higher order perturbative
calculations.29,30,31

Due to the increasing demands on precision and efficiency for jet studies in current and future
collider programs, a great deal of effort has been devoted to improved jet algorithms. Many of the
relevant issues and proposed solutions can be found in Refs. [28-31].

5.6 Heavy quark production

Heavy flavor production is of considerable interest both theoretically and experimentally. The total
cross sections for producing charm and bottom particles in e+e− colliders provide important tests of
the standard model. One heavy flavor particle inclusive distributions in the same experiments allow
the determination of heavy flavor particle fragmentation functions, as described in Sec. 4.1. These
are needed in interpreting the results of heavy flavor production in lepton-hadron and hadron-
hadron collisions.

Current understanding of heavy flavor production is still not complete. We first discuss the
theoretical issues, then the phenomenological ones.

41



Why is heavy quark production a non-trivial problem in PQCD?

Conventional PQCD was developed for hard processes depending on one hard scale, say Q. 11 Heavy
quark production presents a challenge in PQCD because the heavy quark mass, mH (H = c, b, t),
provides an additional hard scale which complicates the situation. It requires different ways to
organize the perturbative series – according to the relative magnitudes of mH and Q.

Conventional Approaches
To see the basic physics ideas, let us focus on the simpler case of production of charm (H = c) in

deep inelastic scattering in a world with three light flavors of quarks. All considerations apply to
a generic heavy quark, and to hadro-production processes. Consider the PQCD calculation of the
F2(x,Q) structure function which receives substantial contribution from charm production (about
25% at small x, as measured at HERA). The two standard methods for PQCD calculation of heavy
quark processes represent two diametrically opposite ways of reducing the two-scale problem to an
effective (hence approximate) one-scale problem.

Figure 30: Partonic processes for charm production to NLO in the 4-flavor scheme.

Four-flavor Zero-mass Scheme: In the conventional parton model approach used in many global
QCD analyses of parton distributions (e.g. MRS, CTEQ) and Monte Carlo programs (e.g. ISAJET,
PYTHIA, HERWIG), the zero-mass parton approximation is applied to a heavy quark calculation
as soon as the typical energy scale of the physical process Q is above the mass threshold mc. This
leaves Q as the only apparent hard scale in the problem. The LO and NLO production mechanisms
for charm are given by Fig. 30, where the solid lines represent the charm quark. Note that the
NLO diagrams are of order αs, just as for the familiar case of
total inclusive DIS structure functions. This is the most natural
calculational scheme to adopt at high energies when Q À mc.
However, as we go down the energy scale toward the charm
production threshold region, it becomes unreliable because the
approximation mc = 0 deteriorates as Q → mc. This point
is illustrated qualitatively in the accompanying figure as an
uncertainty band marked by vertical hashes which is narrow at
large Q but is expected to widen as Q → mc.

Q2

F2
c(x,Q)

4-flavor O (αs) NLO

NLO

Three (Fixed) Flavor Scheme: In the heavy quark approach which played a dominant role in
“NLO calculations” of the production of heavy quarks,32 the quark is always treated as a “heavy”
particle and never as a parton. The mass parameter mc is explicitly kept along with Q as if they
are of the same order, irrespective of their real relative magnitudes. This is usually referred to
as the fixed flavor-number (FFN) scheme. The LO and NLO partonic processes in this scheme

11We use Q as the generic name for a typical kinematic physical scale. It could be Q, W , or pT , depending on the

process.
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are exemplified by the type of diagrams shown in Fig. 31. In this case, the NLO diagrams are

Figure 31: Partonic processes for charm production to NLO in the 3-flavor scheme.

of order α2
s, which are much more complicated to calculate! Near the threshold Q ∼ mc, it is

natural to consider the charm quark as a heavy particle, hence the NLO calculation in this scheme
is reliable. However, as Q becomes large compared to mc, the FFN approach becomes unreliable
since the perturbative expansion contains terms of the form αn

s logn
(
m2

c/Q2
)

at any order n, which
ruin the convergence of the series—these terms are not infrared safe as mc → 0 or Q → ∞.
This is precisely the situation discussed in Sec. 4.3 where we
described how such large logarithms must be resummed to all
orders in order to bring the perturbation series under control.
Thus the uncertainty of the 3-flavor calculation grows as Q/mc

becomes large – it is no longer NLO in accuracy, in spite of the
hard order α2

s calculation! This is illustrated in the accompany-
ing figure as an uncertainty band marked by horizontal hashes
which is narrow near threshold but is expected to widen as
Q/mc increases.

Q2

F2
c(x,Q)

NLO

NLO

αs
2 ln2( )

3-flavor O (αs
2)

Generalization of the zero-mass QCD parton formalism

It should be obvious from the two figures illustrating the behavior of the 3- and 4-flavor schemes
that: (i) these two conventional approaches are individually unsatisfactory over the full energy
range, but are mutually complementary; and (ii) the most reliable PQCD prediction for the physical
F2(x,Q) overall, can be obtained by combining the two, utilizing the most appropriate scheme at
that energy scale Q, resulting in a composite scheme, as represented by the cross-hashed region in
Fig. 32a, which is simply a composite of the two figures of the previous subsection. The use of a
composite scheme consisting of different numbers of flavors in different energy ranges, rather than a
fixed number of flavors, is familiar in the conventional zero-mass parton picture. The new formalism
espoused in Refs. 17 provides a quantum field theoretical basis18 for this intuitive picture in the
presence of non-zero quark mass. The 4-flavor scheme component of the general formalism includes
the full charm quark effects after the infrared unsafe part has been resummed. It represents a
substantial improvement over the conventional 4-flavor formalism in the region where log2(Q/mc)
is not very large, which includes a substantial fraction of the current experimental range. This
general approach has now been adopted, in different guises, by most recent papers on heavy quark
production in PQCD.33,34

The intuitively “obvious” general formalism is also technically precise: the order-by-order rules
of calculation can be stated succinctly;35 and the validity of the factorization theorem which un-
derlies it can be established to all orders of perturbation theory.18 The essential ingredients of this
formalism are:
• 3-flavor scheme at physical scales Q ∼ mc and extending up;
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Q2
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Figure 32: (a) Intuitive picture of the general formalism (a composite scheme); (b) Matching between the 3-flavor

and 4-flavor calculations in the general formalism; the matching point can, in principle be chosen anywhere provided

log(mc/µ) is not large.

• 4-flavor mc 6= 0 scheme at asymptotic Q À mc and extending down;
• a set of matching conditions which relate the corresponding field-theoretic quantities, such as
αs(µ) and the parton distribution functions fa

A(s, µ), of the two schemes at some scale µm (the
discontinuities are finite and calculable);
• a suitably chosen transition scale µt at which one switches from one scheme to the other in order
to achieve efficiency and accuracy (as discussed above) when one makes physics predictions.
There is considerable inherent flexibility in the choice of µm and µt, which partially accounts for

the apparent differences in recent papers on this subject. Some of the subtleties associated with
choosing the matching point can be gleaned from Fig. 32b, where we show the matching between
the 2 component schemes for the function αs(µ). At LO, the 3- and 4-flavor αs(µ)’s are known to
match without discontinuity at µ = mc (as also are the PDFs). Thus, for the choice µm = mc,
the discontinuity is of higher order; but for a different choice of matching point, such as µm2,
the (calculable) discontinuity will be ∆αs ∼ αs log(µ/mc) + α2

s. For more detailed discussion, see
Refs. [35,18].

We conclude from this discussion that:
• The natural theory of heavy quark production (using charm as a specific example), valid at all
energy scales, must combine 3-flv and 4-flv schemes (mc 6= 0); this can be done in a seamless way.
The same can be done across the b-quark threshold when one makes the transition from the 4-flv
scheme to the 5-flv scheme. The general framework will then be a composite scheme consisting of
three (3-, 4- and 5-flv) schemes.
• Simplistic labels “LO” & “NLO” can be misleading: the power of αs (# of loops) alone does
not determine the accuracy of the calculation in a multi-scale problem, due to the presence of
potentially large logarithms, e.g. ln(Q2/m2

c), and other physical considerations. True LO & NLO
results depend on the scheme and on the kinematic range of the process. In particular, for charm
production, both order αs 4-flavor calculation and order α2

s 3-flavor calculation are in principle
NLO in their respective scheme. The effectiveness of these “NLO” calculations, however, depends
on the relative magnitude of the physical variable Q with respect to mc, as explicitly illustrated in
figures shown in the “conventional approach” subsection, under 3-flavor and 4-flavor schemes.
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Lepto-production of charm and hadro-production of bottom

The status of the phenomenology of heavy quark production in lepton-hadron and hadron-hadron
scattering are somewhat different. We briefly summarize each.

Lepto-production of charm
Measurement of charm production in DIS has come of age with the advent of the HERA exper-

iments because of their reach into the small x region. In this region, where gluons dominate, one
expects the ratios of final states containing various quark flavors to be simply proportional to the
squares of the charges. The measured fraction of events containing charm at small x at HERA –
around 25% – is quite consistent with this simple parton model expectation. Quantitatively, one
can measure the one-particle inclusive cross section for a given charm meson (say D∗) at some
3-momentum p; or attempt to obtain an inclusive structure function for producing charm, say F c

2 ,
by summing over all final states which contain at least one charm particle.

To compare the experimental measurements with theory, one encounters somewhat of a dilemma.
Experimentally, the one-charm-meson inclusive measurement is the more direct of the two. But
the theoretical calculation of this cross section involves a lot of uncertainty associated with the
fragmentation functions of the partons into the heavy meson. On the other hand, the inclusive
structure function may appear to be simpler theoretically; 12 but its experimental determination
requires both extrapolation outside the measured region and estimates of unmeasured channels.

Given these caveats, let us consider the inclusive case first. Previous comparison between
the NLO 3-flavor calculation36 (which is supposed to be good near threshold but questionable at
high energies) with the recent Zeus data37 showed good agreement (with the qualification that the
experimental extrapolation actually makes use of the same theory, hence there is some circularity
involved in this comparison). This indicates that, in spite of the cautionary notes about the
theoretical shortcomings of the fixed-flavor scheme at high energies, the range of accuracy of the
3-flavor calculation may be enough to cover the available experimental region.

Recently, the same data have been compared with the complementary NLO 4-flavor calculation35

(which is expected to be good at high energies, but becoming questionable near threshold). The
agreement turns out to be just as good over the entire measured range. This is shown in Fig. 33a.
For detailed discussions on choice of scale and other relevant issues, cf. Ref. 35.

Thus, we have the remarkable situation that both the simple (order αs) NLO 4-flavor calculation
and the more elaborate NLO 3-flavor (order α2

s) calculations are robust in the currently available
experimental energy range. Within the general framework described in the previous subsection,
this means the overlap region between the two schemes is extensive: both descriptions are valid,
hence there is no real need to make a transition from one to the other in current phenomenology.
From the practical viewpoint, the (order αs) NLO 4-flavor scheme does have the advantage of being
calculationally much simpler.

As mentioned earlier, the experimental results are on firmer ground for the differential distri-
butions of the produced charm meson; but the theory is less reliable because: (i) uncertainties
on the fragmentation function are large; and (ii) as is quite well-known for other processes, the
NLO calculation for the inclusive cross sections becomes effectively LO for differential distributions
(loops are opened up)! For the latter reason, the order αs 4-flavor calculation becomes less reliable
than the α2

s 3-flavor calculation because the resummation of logarithm terms into the charm parton

12Actually, the theoretical definition of F c
2 itself is subject to some subtlety on the question of IRS, which we shall

not go into here, cf. Refs. [35,34].
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distribution function involves simplification of the kinematics of almost collinear charm partons in
the final state. In order to obtain accurate predictions for the differential distributions, one needs
to carry out the 4-flavor calculation also to order α2

s.

(a) (b)

Figure 33: (a) Comparison of 4-flavor calculation with ZEUS DIS charm production data; (b) Comparison of 4-flavor

calculation with CDF inclusive hadron-production of b.

Hadro-production (of bottom, mostly)
Heavy quark production in hadron-hadron collisions, from fixed-target to collider experiments,

has been extensively reviewed.38 Most of the theoretical calculations have been carried out in the
fixed-flavor-number (FFN) scheme. Overall, the phenomenological status is not as satisfactory as
in the case of lepto-production.

The simplest case is top production in hadron colliders. The top quark mass is so large that
there is no doubt about what scheme to use in the theoretical calculation: 5-flavor QCD partons.
The NLO calculation has been supplemented by threshold resummation corrections (which are not
large). The phenomenology is quite satisfactory.

The situation with charm and bottom production is rather different. Even from the purely
theoretical viewpoint, the reliability of the FFN scheme is questionable because of two related facts,
known since the first NLO calculations were completed: (i) the NLO term is of the same numerical
size as the LO term (with no obvious understanding of why); and (ii) the scale dependence of the
NLO result is as strong as the LO one (in sharp contrast to the well-behaved cases of DIS and DY
processes). Phenomenologically, this results in a large range of uncertainty in the predicted cross
section, both for charm and bottom production. The measurement of the charm cross section in
hadron-hadron scattering is very challenging; the phenomenological status is not clear. Cf. Ref. 38.
The measurement of b production at the Tevatron collider is more revealing. Figure 33b shows the
comparison of data from the CDF experiment with the NLO 4-flavor calculation. We see that the
theory curves lie about a factor of two above the experimental measurements, even allowing for the
wide band of theoretical uncertainties.

One possible way to improve the fixed 4-flavor calculation is to use the 5-flavor scheme, taking
into account the b-parton, since the mass mb parameter is small compared to the typical energy
scale for the Tevatron experiments. Two recent studies found that this approach does not substan-
tially improve the agreement between theory and experiment.39 Another possibility is that large
log(1/x) ∼ log(qT /mb) terms could substantially increase the theoretical prediction if they are
resummed.40 The problem remains open at present, and, along with direct photon production, it
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represents an important challenge to PQCD theory.

6 Global QCD Analysis and Parton Distributions

With the factorization theorem as its foundation, the QCD parton model provides us with the
framework to interpret experimental results from all hard processes involving hadrons, and to
make a wide range of predictions on SM and new physics processes. Applications to the individual
processes were examined in the last section. This section concerns the global analysis of hard
scattering data in order to
(i) test the validity of the PQCD formalism;
(ii) determine the fundamental parameters of the theory – the coupling αs(µ), and the quark masses
mi(µ);
(iii) extract the non-perturbative PDFs and FFs from experiments which involve hadronic initial
and/or final states.

The emphasis will be on parton distributions of the nucleon, both because of their paramount
importance and because, by far, the most progress has been made on this front. All the issues we
discuss are in fact general, so they apply to the other cases too.

As already mentioned in Sec. 4.6, the determination of PDFs in a global analysis is conceptually
simple: on the RHS of Eq. (54), one inputs a set of suitable experimental data, along with the
perturbatively calculated hard cross sections to some order in αs, then one obtains (on the LHS)
the PDFs of interest – provided, of course, the set of inputs is “complete” and mutually consistent.

In practice, the task is far from being straightforward because of a large number of theoretical,
experimental, and phenomenological complications. We first summarize the various inputs to cur-
rent global analyses, and discuss the potential complications, in order to put the subsequent review
of recent results and future prospects in the proper perspective.

6.1 Common inputs and relevant issues

Experimental input
In principle, we would like to include as many experimental data sets as possible in the global

analysis. To give an idea of the wide range of potential experiments available for global QCD
analysis, we list the physical processes and relevant experiments by their common names without
elaboration:
· DIS – Neutral Current (e,µ on p,d)

SLAC, BCDMS, NMC, E665, H1, ZEUS
· DIS – Charged Current (ν, ν̄ on nucleus)

CDHSW, CCFR, CHARM, CHORUS
· Drell-Yan – continuum (lepton-pair)

E605, NA51, E866
· Drell-Yan – W and Z

CDF, D0
· Direct Photon Production

WA70, UA6, E706, ISR, UA2, CDF, D0
· Inclusive Jet Production

CDF, D0
· Lepto-production of Heavy Quark (c)

H1, ZEUS
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· Hadro-production of Heavy Quark (b)
CDF, D0

The DIS experiments are high statistics, high precision, mature experiments. They typically con-
sisting of many hundreds of data points with statistical and systematic errors at the order of only
a few percent. By comparison, direct photon, jet and heavy quark production experiments have
much fewer data points with considerably lower statistics, and often with large systematic errors.
The complexity of individual data sets as well as the diversity of the collective data sets pose a
great deal of challenge for global analysis. Some specific issues are:
• Because of the complexity of modern experiments, the errors on most experimental data sets are
only approximate; e.g. many sources of systematic error are often combined into a single effective
uncorrelated error for each data point. Even when more detailed information on systematic errors
are available, they may not behave as expected for ideal experiments in textbook statistics (e.g. in
a high statistics experiment, the χ2 per data point may deviate significantly from unity even for the
best of fits, rendering the data set nominally very improbable in a strict statistical interpretation).
These facts make the application of standard statistical tools difficult.
• When different experimental data sets on the same, or similar, physical processes are included
in the global analysis, they may or may not be consistent by standard statistical tests, even if
individual ones appear to be self-consistent. In practice, it is not uncommon to find high precision
experiments being “inconsistent” with each other according to strict statistical rules.
• When some data sets consist of many hundreds of data points, while others only a few points
(or even a single point, as NA51 in the above list does), how should these data sets be relatively
weighed in a global analysis, particularly if the latter is found to carry negligible statistical weight
in a naive combined analysis, but is known to provide some crucial physical constraints to PDFs? 13

• Some important experiments (such as neutrino DIS) are performed on nuclear, rather than
nucleon, targets. Although the assumption of incoherent scattering off individual nucleons inside the
nucleus is a good first approximation, it has been known experimentally that nuclear shadowing and
anti-shadowing (the EMC effect) can significantly affect the quantitative analysis. Heavy nuclear
target correction factors have been measured for incident charged leptons; but not for neutrinos.
Deuteron target corrections, needed for extracting neutron structure functions, are certainly not
available. Theoretical calculations on nuclear correction factors are model-dependent, hence often
controversial.

Theory input
The main theoretical input to the global analysis is the perturbatively calculated hard cross

sections, along with the QCD evolution equations which control the scale dependence of the PDFs.
The hard cross sections and the evolution kernel must be calculated to the same order in PQCD,
in order to obtain consistent results from the factorization formula – e.g. as pointed out in Sec. 4.5,
the uncertainty due to the choice of scale is formally of higher order only if this condition is met.

Sources of possible large corrections to the standard QCD parton model formula can come from:
1. Higher-order contributions in αs which happen to be large, such as in direct photon production
at fixed target energies and b quark production at hadron colliders;
2. Significant corrections due to (pT , small-x, threshold) resummation of logarithms arising from
multi-scale problems which occur near boundaries of the kinematic space;
3. Power-law corrections (higher-twists, renormalons, target-mass corrections . . . etc.);
13This would not be a problem if all input experimental data sets, including errors, are perfect. But in reality they

are not.
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4. Nuclear correction, if applicable, as mentioned above.
In practice, as described in our survey of hard processes in the last section, the reliability of the

PQCD calculation varies widely from process to process. How can the theoretical uncertainties in
PQCD be assessed and included in the analysis? This is a difficult question to answer. The varied
behavior in different processes necessitates a flexible approach on a case by case basis.

Parametrization of non-perturbative PDFs
To proceed with a global QCD analysis, one needs to provide a set of initial PDFs at some

scale µ = Q0. This is done usually in terms of a set of functions, say fa
p (x,Q0), with adjustable

parameters which are eventually optimized to fit the global data. In principle, since these functions
represent our ignorance of the non-perturbative nucleon structure at the confinement scale, there
should be complete freedom in choosing their parametric form. In practice, we do have some handle
on their behavior, and the most commonly used form is

f(x,Q0) = A0 xA1(1− x)A2P (x) (65)

where the parton flavor label “a”, as well as the hadron label, on f , P (x), and the coefficients {Ai}
have been suppressed; and P (x) is assumed to be a smooth function.
• The factor xA1 is motivated by physics considerations in the small x limit (high energy for fixed
Q2) where the power A1 has a Regge interpretation.
• The factor (1−x)A2 is motivated by physics considerations in the x → 1 limit (resonance region,
when Q ∼ Q0), where the power A2 can be related to valence quark wave functions and counting
rules.
• The factor P (x) is purely phenomenological, in order to accommodate any smooth behavior
required to represent adequately the unknown non-perturbative PDFs. The form varies in the
literature — examples include (1 + A3

√
x + A4x) (MRS), (1 + A3x

A4) (CTEQ), . . . etc.
In a systematic global analysis, there are two concrete issues concerning this parametrization

which need to be addressed.
1. How much flexibility should be built into P a(x) – how many independent parameters {Aa

i } are
needed? The number cannot be too small, so that there is not enough flexibility to accommodate
observed experimental phenomena. 14 On the other hand, the number cannot be too large, so that
there is too much freedom, beyond that which can be meaningfully constrained by existing data. 15

2. How do we determine the dependence of the results of the global analysis on the choice of the
parametric form; and how do we quantify the uncertainties of PDFs due to this choice? Any specific
choice of the parametrization form will introduce some artificial correlations in the behavior of the
PDFs in different x ranges – e.g. the factor xA1 will influence the behavior of the PDF over the
entire x range, even if the value of A1 is primarily determined by data at small x, and likewise
for the other factors. The question is how much? The polynomial form for the initial distribution
functions can also introduce artificial nodes in the PDF.

To avoid some of these problems, a radical approach would be to abandon using parametrized
functional forms completely, and treat the input functions as sets of independent points (as in the
mathematical definition of a “function”). This strategy clearly suffers from the problem of having
too many degrees of freedom, as mentioned above. Attempts to reduce the number of degrees of

14Historically, this situation happened when initial PDFs were assumed to have SU(2) or SU(3) flavor symmetry. New

experimental data then required the expansion of the number of parameters to allow for flavor symmetry violation.
15Artificial and unphysical structures in the PDFs can result from such a situation.

49



freedom (e.g. by imposing smoothness) will probably bring back the same problems this strategy
is meant to cure!

6.2 Global analysis strategies and procedures

In the face of such a collection of tough (and sometimes subtle) experimental, theoretical, and
phenomenological problems summarized above, conventional global QCD analyses have to adopt
corresponding practical strategies based on physical intuition, experience, and common sense, rather
than strict statistical prescriptions. We mention some of the common strategies and choices adopted
in the latest works, such as those of the widely used MRS and CTEQ efforts.

Theory: Practically all current global QCD analysis work is still based on NLO QCD. Although
some NNLO hard cross sections are available, the corresponding evolution kernel is not. Besides,
the size of the NNLO correction in those cases where they are available, tends to be small (compared
to, say current experimental errors); hence the practical need for their inclusion is unclear. The
place where NNLO corrections seem to become noticeable is usually near the boundaries of the
phase space (e.g. at small x), but these are multi-scale regions where the more relevant approach
would be to incorporate the appropriate resummation instead.

Within NLO QCD, an issue which has attracted some attention in recent years is the choice
of scheme in relation to the treatment of the heavy quarks c and b. This problem was discussed
in some detail in Sec. 5.6. Historically, the zero-mass parton formalism was usually adopted,
superimposed with incrementing the number of effective quark flavors by one each time a heavy
quark threshold is crossed. This is relatively simple, and practical – since the hard cross section
calculation for most processes has only been done in this scheme. As mentioned in Sec. 5.6,
however, recent measurements of sizable contributions of charm production in DIS has prompted
many groups to adopt variants of the more general formalism of Collins et al., which combines
the various schemes with different number of flavors while keeping relevant quark mass effects.
The MRST23 distributions employ such a new scheme. The use of these distributions with hard
cross sections calculated in the conventional scheme is somewhat questionable. For the sake of
maintaining consistency, the CTEQ distributions41 offer two alternatives, one in the conventional
zero-mass scheme and one in the non-zero mass scheme.

Experimental input: In spite of the wide range of experiments available, the selection of which
data sets to use in a global QCD analysis is non-trivial, because of the complex experimental and
theoretical issues discussed earlier. We mention a few illustrative examples.
• Should direct photon production data be used at all; if so, which ones? The reasons for raising
these questions are:

1. The theoretical uncertainty for this process is not under control, as discussed earlier; even
though, phenomenologically, the historical idea of constraining the gluon distribution by direct
photon production is extremely appealing. Without introducing kT broadening, theoretical predic-
tions are a factor of 3 smaller than the latest experiment; with kT broadening, one can fit data,
but the experiment hardly provides any constraint because the theory now depends sensitively on
the amount of smearing introduced.

2. Independent of the theoretical dilemma, there appears to be an inconsistency between the
two most prominent fixed-target experiments, WA70 and E706. For details, cf. Refs. [27,45].
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In the face of these problems, the CTEQ5 analysis does not use direct photon data. MRST9823

and MRST9942 used these data, and obtained very different gluon distributions, depending directly
on the amount of kT smearing assumed. In the more recent MRST2000 study,43 the direct photon
data were dropped.
• Should experimental errors be taken at their face value; if so, what should be done when strict
statistical tests rule out individual experiments or some combination of experiments?

As already mentioned earlier, real experiments seldom produce perfectly behaved errors. There-
fore, this question has to be faced in any global analysis effort. In a purist’s approach, one ends
up with only one or two sets of data which are statistically compatible. The effort ceases to be a
global analysis.
In practice, most groups take a more flexible interpretation of the errors; and include all relevant
experiments which are not in “obvious conflict” with each other. This practice inevitably introduces
subjective judgements. Table 2 lists the experiments included in the CTEQ5 analysis; it serves

Experiment Process # Data pts Reference
BCDMS DIS µp 168 CERN
BCDMS DIS µd 156 CERN
H1 DIS ep 172 HERA
ZEUS DIS ep 186 HERA
NMC DIS µp 104 CERN
NMC DIS µp/µn 123 CERN
CCFR DIS νp F2 87 FNAL
CCFR DIS νp F3 87 FNAL
E605 D-Y pp 119 FNAL
NA51 D-Y pd/pp 1 CERN
E866 D-Y pd/pp 11 FNAL
CDF Wlep−asym. 11 FNAL
D0 p̄p → jet X 24 FNAL
CDF p̄p → jet X 33 FNAL

Table 2: List of data sets used in the global analysis.

as an illustration of the scope of experimental input in a typical modern global QCD analysis of
PDFs. The experimental data sets used by the MRS group are similar, but not identical (as the
discussion of direct photon experiments already implies).
• In what range of kinematic variables (x, Q) should the global analysis be performed?

Although, in principle one would like to have as wide a range as possible, there are reasons
to be judicious in restricting the range in practice. For instance, one should compare theory with
experiment only where the theory is expected to be reliable. This rules out the low Q2 region, where
there are large amounts of data but where one does not expect the twist-two PQCD calculations
to be good. Thus, one typically imposes kinematic cuts of Q > 2 GeV and W > 4 GeV in DIS.
The latter is designed to steer away from the resonance region which does not properly belong to
DIS. For inclusive jet production, because of problems of jet definitions (both experimental and
theoretical), a cut as high as pT > 30 ∼ 50 GeV is required.

Figure 34 gives the kinematic map of the range of (x,Q) variables covered in a typical modern
global analysis. We observe the many orders of magnitude probed by these analysis, with DIS data
at HERA reaching into the very small x region, and the hadron collider data on jet production
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extending to the highest Q (hence shortest distance in space-time) values.

Figure 34: Kinematic map of the (x, Q) range covered by the data sets used in CTEQ global analysis. The comple-

mentary roles of the fixed-target, HERA, and Tevatron experiments are clearly seen.

Global fitting procedure Given that sensible choices of strategies and compromises need to be
made on many issues in a realistic global analysis, the most practical way to determine the PDF
parameters by comparing theory to a large number of diverse experiments is by the method of least
χ2 fits.

In the CTEQ analysis, one adopts the following effective global χ2 function to represent known
experimental inputs:

χ2
g =

∑
n χ2

n (n labels the experiments),

χ2
n =

(
1−Nn

σN
n

)2
+

∑
I wn

(
NnDnI−TnI(a)

σD
nI

)2
,

(66)

For the nth experiment, DnI , σD
nI , and TnI(A) denote the data value, measurement uncertainty,

and theoretical value (dependent on the theory parameters {A}) for the Ith data point; σN
n is the

experimental normalization uncertainty; Nn is a relative normalization factor for that experiment
in the global analysis; and wn is a “prior” weighting factor based on physics considerations or on
information derived from existing work. This χ2

g function provides an effective way of searching
for global minimum solutions of the PDF parameters {Ai}, which incorporates all experimental
constraints in a uniform manner while allowing some flexibility for physics input. It is particularly
practical since most experiments used in the global analysis only publish an effective point-to-point
(i.e. uncorrelated) systematic error along with the statistical errors.

By minimizing this χ2
g function with respect to {Ai}, one obtains candidate solutions to the

PDFs at the scale µ = Q0. QCD evolution then allows the generation of the PDFs over the entire
(x,Q) plane.
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6.3 Review of recent parton distribution functions of the nucleon

Based on considerations summarized in the previous sections, and using strategies similar to that
described above, the global QCD analysis of parton distributions has made steady progress in the
last twenty years, keeping pace with advances in QCD calculations as well as ever more extensive
and accurate experimental measurements. The most widely used MRS23 and CTEQ41 parton
distribution sets represent independent work, using comparable theoretical and experimental inputs
but different strategies and procedures. 16

It is important to point out that the published PDF sets are, at best, representative or can-
didate PDFs. They are not unique or “best” sets, even for a given set of inputs – because of
the complications discussed above, and the subjective choices which affect their determination and
selection (for circulation purposes). The uncertainties of these PDFs will be discussed in the next
section.

Figure 35: Overview of the parton distribution functions of the proton at a scale of 5 GeV, as represented by the

CTEQ5M PDF set.

Representative results Figure 35 shows an overview of the parton distribution functions of the
proton at a scale of µ = 5 GeV, as represented by the CTEQ5M PDF set. The gluon distribution is
scaled down by a factor of 1/15, while the flavor SU(2) breaking combination d̄− ū is scaled up by
a factor of 5, in order to make the respective functional dependence discernible in the plot. For the
same purpose, the small- and large-x behavior of these functions have been made more apparent
by adopting a horizontal scale which is log(1/x)-like at small x and x-like at large x respectively.

Flavor dependence We can see that the gluon distribution is, by far, the dominant parton at
small x; while the valence d and u quarks are the dominant ones at large x. The sea quark distri-
butions are definitely neither flavor SU(3) nor SU(2) symmetric, as naively expected in the early
days of the QCD parton model phenomenology. The strange quark distribution is about 50% that

16On the other hand, the GRV series44 of PDFs is based on a rather different approach: (i) it emphasizes “radiatively

generated partons,” especially at small x, by starting the QCD evolution from a very low energy scale, say 300-500

MeV; (ii) it uses the 3-flavor fixed flavor number scheme, hence does not include the heavy quark partons; and (iii)

phenomenologically, the fit to data other than DIS is not as comprehensive as the other two.
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of the average (d̄+ ū)/2 as the result of an input assumption, based on some experimental evidence.
(Cf. more discussions in the next section on uncertainties.) The SU(2) breaking combination d̄− ū,
which is relatively well-established by now, has a distinct structure as shown.

Q dependence The shape of the PDFs depends sensitively on the scale at which the nucleon is
probed, especially in the relatively low energy region. Fig. 36 shows the Q-evolution of the gluon
distribution from 2 GeV to 80 GeV. (The function has been scaled vertically by the factor shown
in order to exhibit its behavior at large and small x.) As can be seen, the softening of the x

dependence over this range of Q is very substantial.
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Figure 36: The changing shape of the gluon distribution from Q = 2 GeV to 80 GeV, as the result of QCD evolution.

Comparison of representative PDF sets The quark distributions are generally well deter-
mined by the extensive precision DIS data, within some uncertainties about the flavor dependence
to be discussed in the next section. On the other hand, because the gluon does not couple directly
to the electroweak gauge bosons (which are used to probe the parton structure in lepton-hadron
processes), there is still a fair range of flexibility for the behavior of the function G(x,Q) (fg(x,Q)
in earlier notation). This range is highlighted in Fig. 37 which consists of a comparison of some
CTEQ5 and MRST98 gluon distributions. The interpretation of these results also serves to illus-
trate (or make concrete) some common issues discussed earlier concerning global QCD analysis.

• The large range of variation between the MRST sets (labeled MRS98-n in the graph) in the region
around x ∼ 0.3 reflects the freedom of choice of the kT -broadening parameter 〈kT 〉 which produces a
very significant correction factor to the theoretical cross section (recall this factor needs to be of the
order of 2 ∼ 3 for E706 to agree with data), in addition to the well-known large scale dependence
for NLO QCD predictions.26,45 The narrower apparent range seen between the two CTEQ5 sets in
this x span is due to the constraints on the shape of G(x,Q) imposed by the inclusive jet cross
section (which has rather stable NLO QCD theory predictions). The MRST-G↑ set (MRS98-2 in
the figure) uses no kT broadening; thus, its G(x,Q) is closest to that of CTEQ5M. 17

17The same is true for the new MRST gluons,43 since direct photon data are no longer used.
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Figure 37: Comparison of some CTEQ5 and MRST98 gluon distributions. The results are explained in the text.

• For the x > 0.5 region, the wide range of variation of the CTEQ5 sets reflects the lack of
experimental constraints on G(x,Q) at large x. The relative “rise” of the CTEQ5HJ gluon at large
x is the consequence of requiring the fit to agree with the highest pT inclusive jet data points. On
the other hand, the convergence of the MRST gluons in this region appears to be due to choosing
the same parametrization at large x for all these sets.
• The differences between the two series in the range 0.01 < x < 0.1 are most likely the indirect
consequence of the differences in the large x range, 0.1 < x < 0.6, due to the momentum sum rule
constraint. Finally, the “node” exhibited by the MRST distributions near x = 0.15 is probably an
example of artifacts which result from a specific choice of functional form, coupled with the sum
rule requirement, as discussed earlier.

One of the phenomenological consequences of these differences can be seen in Fig. 38, where
the CDF data on inclusive jet production are compared to calculations based on the CTEQ5 and
MRST98 distributions.

The moral of this comparison: results from global analyses must be understood in the context
of the relevant inputs; they can be significantly driven by subjective choices built into the analysis.
Here we have seen several dramatic effects due to the use of, or emphasis on, data (direct photon,
high pT jet); theoretical assumption (kT broadening); and choice of functional form for the initial
distributions.

6.4 Uncertainties of PDFs and their predictions

Parton distribution functions are used in all calculations of cross sections for high energy interac-
tions involving hadrons. Although much progress has been achieved in narrowing down the PDFs
in several generations of global QCD analysis, it is important to know the uncertainties of the
PDFs and, more importantly, their physics predictions, in order to meet the increasing demands of
precision standard model studies and new particle search predictions. Figure 39 shows the results
of a recent study of “errors” on the PDFs, as the result of propagating experimental errors from
a collection of DIS experiments. The LHS plot shows all the parton flavors; the RHS plot shows
the percentage uncertainties for the gluon and the sum of all the quark flavors. Whereas these
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Figure 38: Comparison of the D0 inclusive jet production cross-section to NLO QCD calculations based on the PDFs

of Fig. 37.

plots underline the existence of substantial uncertainties, they do exaggerate the errors because
the various flavors of PDFs are highly correlated (which cannot be seen from these plots) – as one
flavor goes up, the others will compensate by moving down as constrained by data and by sum
rules.

We first survey what aspects of the nucleon PDFs are still uncertain, and then describe recent
new efforts to quantify these uncertainties in a systematic manner.

What are current uncertainties on PDFs?

The Gluon Distribution
The gluon distribution contributes to all high energy processes. It is important for all SM,

SUSY, and other new physics calculations. Yet, as already indicated in previous sections, it is
among the least well determined of the parton distributions. The most relevant measurements
for its determination are: dF2(x,Q)/d ln Q in DIS; inclusive and differential jet production cross
sections; direct photon production; and heavy quark production. Comprehensive analysis of the
Q2 dependence of the DIS structure functions, with the aim of determining G(x,Q), has been
carried out by the experimental groups, particularly BCDMS, NMC, H1, ZEUS and CCFR. Bands
of uncertainties on G(x,Q) have been obtained by all groups; the results shown in Fig. 39 are
representative of such efforts. The inclusive jet production cross section which is directly sensitive
to G(x,Q) has been used by the CTEQ collaboration in their global analysis of PDFs. This is
useful in the 0.05 < x < 0.3 region, but there are still uncertainties for x > 0.3, as we have seen in
Fig. 39.

In contrast, the “classic” process for gluon determination – direct photon production – has been
beset with uncontrolled theoretical uncertainties as has already been described. In principle, heavy
quark production cross sections at hadron colliders are also very sensitive to G(x,Q). Unfortunately,
the theoretical uncertainty in NLO QCD for this process also considerable, not to mention the
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Figure 39: Uncertainty bands of PDFs obtained by M. Botje46: (a) the valence quarks, the gluon and the sea quarks;

(b) fractional uncertainties of the gluon distribution (left column) and the sum of all quark distributions (right

column).

currently unresolved discrepancy between theory and experiment for b production, cf. Sec. 5.6. In
the end, pinning down of the gluon distribution will take the combined constraints from many
processes, and it will depend on much needed improvements in theory, as well as in expanded
experimental input.
Strange Sea Size, Shape and Charge Symmetry

Two combinations of total inclusive DIS structure function measurements are sensitive to the
strange quark distribution. At the naive parton level,

∆FCC
3 = F νN

3 − F ν̄N
3 ≈ 4(s− c) and

5
6
FCC

2 − 3FNC
2 ≈ (s− c).

In addition, a direct measurement of the inclusive structure function with tagged charm yields
naively F charm

2 ≈ s. These relations must be supplemented by “NLO” contributions from sub-
processes involving a gluon initial state, such as g + γ∗/w → q/c to be well-defined in the QCD
framework, cf. detailed discussions about LO/NLO interplay in Sec. 5.6.

Most current global analyses use as input the relation, s(x) = 2κ ∗ (ū(x) + d̄(x)) with κ ' 0.5,
inferred from analysis of the charm production cross section, primarily from the CCFR experiment.
There is no clear evidence that this result is consistent with the two combinations of total inclusive
structure functions given above. In fact, there are recent re-analyses of the earlier CDHS and
CHARM data which reached different conclusions.47 The challenge here is to present the neutrino
charm production data in the model-independent form of F charm

2 , so that they can be incorporated
into the general global analysis. Then one can conclusively test the consistency of all available data,
and determine the strange quark distribution independent of assumptions. Another open question
is whether the commonly accepted assumption s(x) = s̄(x) is valid or not.47 This too can be tested
experimentally if all available data are incorporated in a comprehensive analysis.

Breaking of SU(2) flavor symmetry
For studying the breaking of SU(2) flavor symmetry – the u vs. d and ū vs. d̄ differences
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– the relevant experiments are: DIS: Fn
2 − F p

2 , Fn
2 /F p

2 , Fnc
2 /F cc

2 ; Drell-Yan charge asymmetry:
σpd/2σpp; and lepton y-asymmetry in W-production and decay. The unresolved issues are: “correct”
deuteron correction (relevant for F d → Fn conversion); heavy nuclear target corrections (relevant
for extracting F νN

2,3 from F νA
2,3 ); other power-law (e.g. target mass) corrections; small x: what is the

origin of SU(2) flavor symmetry breaking of the sea?; large x: should the ratio d(x)/u(x) → 0 as
x → 1?; and charge symmetry violation: is there any evidence for up(x) 6= dn(x)? As an example,
Fig. 40 shows the uncertainty on ratio d(x)/u(x) based on analysis of current DIS data. There are

Figure 40: Uncertainties on the parton distribution ratio d(x)/u(x) inferred from current errors on DIS experiments.46

extensive discussions of these issues in the literature.48,49 There is currently no clear consensus on
most of them.

The unambiguous way to clear up the situation is to avoid the uncertainties of nuclear cor-
rections by focusing on nucleon targets as much as possible, e.g. use neutral and charged current
events at HERA, utilizing both electron and positron beams.49 (With progress along this line, we
can learn nuclear physics from the measurements on nuclear targets, rather then invoking nuclear
model calculations to extract PDFs.)

Heavy Quarks

An independent question concerns the heavy quark distributions c(x,Q) and b(x,Q). Are they
purely “radiatively generated” by gluon splitting, or are there “intrinsic” charm and bottom partons
inside the nucleon? In order to ask this question in a meaningful way, one needs the generalized
PQCD framework discussed in Sec. 5.6. The phenomenological problem encountered in comparing
theory with the b production cross section from the hadron collider, cf. Sec. 5.6, underlines the need
to keep an open mind about heavy quark distributions – e.g. could the assumption of a small intrinsic
b distribution inside the nucleon resolve the current dilemma? Comprehensive phenomenology on
heavy quark production, in general, has yet to be carried out using the general formalism.
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Quantifying uncertainties of PDFs and their physical predictions

The importance of quantifying the uncertainties of PDFs and their physical predictions for current
and future HEP programs is self-evident. Given the complexity of the numerous issues discussed
throughout this section, however, the real question is: how should this be done? We first briefly
introduce an ideal approach, based on the assumption that perfect experimental inputs are available.
Then we describe a less ambitious, but more practical, effort to make quantitative estimates of the
uncertainties, given the state of experiments as we have them today.

The ideal approach

In an ideal world, the basic principles of global QCD analysis, including full error calculations,
are very simple. As formulated by Ref. [50] in terms of Bayesian statistics, one proceeds as follows:

Inputs to global analysis:
1. A set of “priors”: theory model (NLO QCD, . . . etc.); and non-perturbative PDFs at some scale
µ = Q0, specified by a set of parameters {A} or some other means (say histograms);
2. Experiment: it is taken as axiomatic that each experiment is represented by an experimental
response function Pexp({xt}|{xe}) which specifies the probability density of measuring {xe} given
the true nature value {xt}. If this function is not directly supplied, then it must be reconstructible
from known data points and error specifications.

Predictions:
Given these inputs, one can, in principle, immediately calculate expectation values of any physics
quantity O as

〈O〉 =
∫

d{A}
∏
a

P a
exp({xo(A)}|{xe})×O(A), (67)

as well as the associated probability distribution Ppdf (Ot), which contains all information about
the uncertainties on O due to PDFs. Here {xo(A)} denotes the theoretical model values in place of
{xt}, {A} denotes PDF parameters,

∫
d{A} implies an integration over the entire PDF parameter

space, and “a” labels the experiments included in the analysis.
In this purist of forms, there is no need to “fit” the experiments with PDF sets at all; the

experimental response functions provide the weighting factor in the integration over all possible
PDFs. The need for fitted PDFs only comes in at the technical level, when one wishes to make
the functional integration

∫
d{A} more practical (e.g. feasible) by replacing it with a discrete sum

over an ensemble of PDF sets {Ai} weighed according to a probability distribution determined by
the experiments.

PDF Fits
To put it in another way, PDF fits correspond to “Unweighing of PDF integration with respect to
a set of experiments”. With such an ensemble of PDFs, the functional integration in Eq. (67) is
replaced by an ensemble average

∫
d{A} ∏

a P a
exp({xo(A)}|{xe}) −→

∑
i

such that: 〈O〉 =
∑

iO(Ai)

where {Ai; i = 1, ..., N} represents the N sets of PDFs in the ensemble which are distributed
according to the constraints imposed by the experiments.

Practical problems:
This program has been pursued by Giele et al.50 Although the principle is clearly sound, it faces
two serious problems for global QCD analysis in the real world.
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• Few real experiments satisfy the axiom promulgated above as essential for this approach, hence
are admissible for the analysis. For most experiments, the input response function Pexp({xt}|{xe}),
or its equivalent, either do not exist; or, when they are constructed from published errors, appear
to be inconsistent (e.g. the χ2 value far exceed the number of data points for any candidate theory);
• When the few admissible experiments are included in a global analysis, they appear to be incom-
patible with each other, i.e. their response functions have little overlap.

Thus, in this ideal approach, the global analysis is reduced in practice to a number of distinct,
apparently incompatible, single- or double-experiment analyses. In addition, the ensemble approach
is extremely costly in computing resources. In order to get reliable estimates, a benchmark number
of N = 100, 000 is often mentioned. This is clearly not practical for usual applications. But a much
smaller number, say N = 100, would undercut the efficacy of the statistical approach. In practice,
it would be very cumbersome even to have to carry out calculations with 100 sets of PDFs in each
application!

The practical approach

The dilemma exposed by the idealized approach shows that, in any realistic global analysis
effort, one must be flexible in seeking ways to deal with real world experimental errors which do
not satisfy textbook axioms. This is a problem routinely faced in complex experimental error
assessments, as well as in many global analysis efforts such as in the PDG project.51

Several efforts have been made to address the practical problems. The first such attempts46,52

focused on DIS experiments for which more complete error information are available. We outline
here a recently proposed three-step procedure,53,54,55 which emphasizes preserving the global nature
of the analysis by retaining all the relevant experimental constraints used in conventional global
analysis, such as MRST and CTEQ. The procedure consists of:
(i) using the effective global χ2

g function, Eq. (66), one obtains a global minimum (the “standard fit”
S0) as in conventional global analysis; then, one obtains additional sets of PDFs {Si, i = 1, . . . n}
in the vicinity of the minimum according to some criteria (cf. below for specifics), as “alternate
hypotheses” to the true PDFs;
(ii) one assesses the likelihood of these alternate hypotheses with respect to the individual experi-
ments by utilizing the full statistical information on the errors for each experiment, using relative
probabilities with respect to the standard set in the calculation; and
(iii) one then combines this collection of uncertainties with respect to single experiments into an
estimated global uncertainty for either physically measurable quantities, or the PDF parameters
themselves.

In a world with perfect experimental errors, this procedure would yield results similar to those
of the conceptually simpler “ideal approach” described above. In practice, this method by-passes
the difficulties which prevent the realization of the latter by breaking the procedure into three
manageable steps; and by using the relative, rather than the absolute, probability in step (ii).

Two complementary schemes were proposed to generate the alternative hypotheses {Si, i =
1, . . . n}: one, the Lagrange multiplier method, emphasizes accuracy for specific physical predictions;
the other, the Hessian method, emphasizes generality in its applicability to all applications. Both
schemes begin with the effective χ2

g function and the standard set S0 mentioned in step (i).

Lagrange Multiplier Method

Let X be a particular physical quantity of interest, which depends on the PDFs. The best
estimate (or prediction) of X is X0 = X(S0). To assess the uncertainty of the predicted value for
X, one first determines how the minimum of χ2

g increases, i.e., how the quality of the fit to the
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global data set decreases, as X is moved away from the best estimate X0. This is done53,55 by
introducing the Lagrange multiplier variable λ, and minimizing the new function

Ψ(λ,A) = χ2
g(A) + λ(X(A)−X0) (68)

with respect to the PDF parameters {Ai} for fixed values of λ. For a given value of λ, the minimum
of Ψ(λ,A) yields a set of parameters {Amin(λ)} that lead to the pair {χ2

g(λ), X(λ)}. χ2
g(λ)

represents the lowest achievable χ2
g for the global data sets if X takes the value X(λ), taking into

account all possible PDFs in the full n dimensional PDF parameter space represented by {Aj}. By
repeating the calculation many times with different choices of λ, one obtains the dependence of χ2

g

on X, i.e. the function χ2
g(X).

One can obtain the maximum range of allowed values of X, say ∆X, for a given tolerance
of the goodness of fit ∆χ2

g = χ2
g − χ2

0 by, say, reading the numbers off a graph of χ2
g vs. X.

(a) (b)

Figure 41: (a) Minimum χ2
g versus σW ; (b) 90% error bars for the individual experiments. The dashed lines are

estimated bounds of the global uncertainty explained in the text.

This is illustrated for the case of W production cross section σW at the Tevatron, in Fig. 41a.
The points on Fig. 41a are the results of constrained fits with various values of the Lagrange
multiplier λ. The solid curve is a quadratic fit to the points to provide a smooth representation
of the continuous function χ2

g(X). One can see that the fits follow closely an expected parabolic
behavior around the minimum. This method is independent of any approximations associated with
functional dependence of χ2

g(A) and X(A) on the PDF parameters {Ai}.
The effective χ2

g function, unlike an ideal χ2 function, does not have a priori quantitative
statistical significance. To assess the uncertainty on X, one goes to step (ii) of the procedure
above. one selects points {Sm} on the solid curve in Fig. 41a, each representing a PDF set, and
regard them as alternate hypotheses to the true PDF set. One then assesses the likelihood of
these alternate hypotheses with respect to the individual experiments by utilizing the full error
information available. At the individual experiment level, these error estimates are meaningful.
The result on σW at the Tevatron is summarized in Fig. 41b.55

The last step is to combine the individual errors into a global measure of uncertainty of σW . One
notes that the ranges shown by the error bars in Fig. 41b are not errors determined independently
by each experiment; rather they represent the allowed ranges of constrained fits to the global data
sets {Sm} imposed by individual experiments. Based on this figure, one estimates the global
uncertainty band, shown by the dashed lines in the figure. In the case of σW for the Tevatron, the
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percentage error is 3%. These can be turned into an effective “tolerance” value for ∆χ2
g of ∼ 100

by Fig. 41a. For LHC, one obtains 5-6% uncertainty, which corresponds to the same ∆χ2
g.

Error Matrix Method

We now turn to the more conventional error matrix approach to study uncertainties of the PDFs,
as represented by the parameters {Ai}. To see that the standard method using the effective global
χ2 function makes sense, Fig. 42a shows the distribution of fluctuations ((NnDnI − TnI(A))/σD

nI

in Eq. (66) for all data used in such an analysis. Indeed, a normal Gaussian distribution with
no adjustable parameter is seen. This lends some confidence to the approach. The (in principle)
straightforward method, however, encounters some serious technical (numerical) difficulties when
applied to global QCD analysis, because of complexities mentioned earlier. The main problem is
that eigenvalues of the Hessian matrix vary by 5-6 orders of magnitude in most choices of PDF
parameters, as shown in Fig. 42b. The highly anisotropic behavior of the χ2

g function, as well
as non-smooth behavior of the theory values TI(A) make conventional general purpose programs
inadequate in providing physically sensible error estimates. This problem has been overcome with
a newly developed iterative method for calculating the Hessian.53,54

(a) (b)

Figure 42: (a) Histogram of fluctuations (measurement - theory)/error for all data points; (b) variation in the order

of magnitude of the eigenvectors of the Hessian.

The basic assumption of the error matrix approach is that χ2 can be approximated by a
quadratic expansion in the fit parameters {Ai} near the global minimum. It is true if the variation of
the theory values TI with {Ai} is approximately linear near the minimum. Letting ∆χ2 = χ2−χ 2

0 ,
one obtains

∆χ2 = 1
2

∑

i,j

Hij (Ai −A0
i )(Aj −A0

j ) . (69)

Hij has a complete set of n orthonormal eigenvectors {vik} with eigenvalues εk :
∑

j Hij vjk = εk vik.

The eigenvectors provide a natural basis to express arbitrary variations around the minimum. In
terms of a new set of parameters defined with respect to the eigenvectors, zi =

√
εi
2

∑
j(Aj−A0

j )vji,

one obtains ∆χ2 =
∑

z 2
i , i.e. the surfaces of constant χ2 are spheres in {zi} space, of radius√

∆χ2.
Now consider any physical quantity X that depends on PDFs, hence the parameters {Ai}. In

the neighborhood of the global minimum, assuming the first term of the Taylor-series expansion
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of X gives an adequate approximation, the deviation of X from its best estimate is given by
∆X = X −X0

∼= ∑
i Xi zi where Xi ≡ ∂X/∂zi are the components of the z-gradient evaluated at

the global minimum, i.e., at the origin in z-space. One can show that, for a given tolerance in ∆χ2,
the uncertainty of the physical quantity can be evaluated from the z-gradient vector components
by the simple formula

(∆X)2 = ∆χ2
∑

i

X 2
i . (70)

In practice, Xi is calculated by finite differences. Within the linear approximation, this equation
can be reduced to an extremely compact and practical form

∆X =
√∑

i

(X(S+
i )−X(S−i ))2 (71)

where S±i are PDF sets which correspond to two points in the z parameter space specified by
{z±j = ±δij

√
∆χ2/2}. The squared uncertainty is proportional to ∆χ2, the tolerance on the global

χ2 function. It can be determined by a procedure similar to the one described in the previous
section, now applied to each of the eigenvector directions rather than to a specific variable. The
overall tolerance can be an average over the eigenvector directions.

Thus, with the reliable calculation of the Hessian and its eigenvectors, one can obtain 2n + 1
sets of PDFs, {S0, S

±
i , i = 1, ..., n} (where n is the number of PDF parameters), from which the

“user” can evaluate the uncertainty associated with any physical quantity X according to Eq. (71).
Preliminary results on application to the W cross section show that they are consistent with those
obtained by the Lagrange multiplier method.53

We should point out that many other sources of uncertainty mentioned in the introduction are
not yet included in this study. Therefore, the uncertainty estimates described here represent, at
best, lower bounds. In any case, this summary is only meant to give a flavor of the very active
developments being pursued in quantifying the uncertainties of PDFs and their predictions.

6.5 Global QCD analysis and the future of HEP

We emphasized throughout this review, particularly in Sec. 4.6, the multi-facet nature of the QCD
parton model, which underlies its central role in HEP research. It is obvious that the quality
of the predictions on standard model and new physics processes in future high energy physics
programs depends critically on the reliability of our current knowledge of the parton structure of
hadrons. On the other hand, to improve this knowledge, we also need experimental input from
future experiments, providing physics constraints complementary to those currently available, to
fill existing gaps and narrow the uncertainties. There is no better way to illustrate this unique
role of the QCD parton model in HEP than concluding this review with a brief survey of this
inter-dependence which represents really two sides of the same story.

Importance of PDFs for future HEP programs

All studies of standard model and new physics processes in future high energy physics programs
involving hadrons rely on QCD parton model calculations based on currently known PDFs. We
highlight a few, in relation to current work on global QCD analysis, which are particularly relevant
for the physics programs of the next generation of hadron colliders: Tevatron Run II and LHC. An
important fact about these colliders is that the W/Z vector bosons will be produced very copiously;
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hence processes involving W/Z will hold center stage in a variety of studies, from the mundane to
the adventurous.

Figure 43a shows the predicted W/Z cross sections as a function of energy, up to that of LHC;
Fig. 43b shows the variation of the predicted cross sections at LHC for selected sets of MRST
PDFs.42
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Figure 43: (a) W/Z total cross-sections vs. CM energy; (b) W/Z total cross-sections at the LHC for selected MRST99

PDFs. (Figures from Ref. [43].)

W/Z production as luminosity standard: Since W/Z cross sections can be measured well at the
hadron colliders, they have been considered as good candidates as luminosity standards, provided
the theoretical calculation is accurate enough. 18 The theoretical uncertainty is dominated by that on
PDFs. Fig. 43b explores the variation of the predicted cross sections at LHC using the conventional
approach of comparing selected PDF sets. The range shown can be regarded, at best, as an educated
guess. The systematic study of this uncertainty, exploring the full PDF space using the Lagrange
multiplier method (cf. Fig. 41), gives a much more reliable estimate. The preliminary results for
∆σW,Z/σW,Z are ∼ 3% at the Tevatron and ∼ 5− 6% at LHC.53 These numbers turn out to be in
agreement with the picture shown in Fig. 43b.

W -mass Measurement: The accurate determination of the W mass is one of the most anticipated
measurements at the next generation of hadron collider physics programs, because of its key role in
precision phenomenology in the standard model, with implications far beyond the SM. Again, the
accuracy of the measurement depends critically on the uncertainties due to the PDF input. But
no reliable estimates of this exist. The keen interest in quantifying PDF uncertainties described
above has, to a significant part, been generated by the need to pin down their implication on the
W mass measurement. Both the Lagrange multiplier and the Hessian methods can be extended to
make quantitative estimates on the size of ∆MW attributable to PDF uncertainties; but the work
has only begun.

Signals and backgrounds for new particle searches: The searches for new particles (Higgs, su-
persymmetric particles and beyond) depend on reliable estimates of the promising signals and the
potential backgrounds. Whereas accuracy may not be of primary concern in general, the relative
sizes of the signal and background (which may depend on different initial state partons) do matter
a great deal in some critical cases. Since many processes at high energies are sensitive to the gluon
distribution, which is not well constrained currently, better determination of the PDFs, particularly
the gluon, will have important impact on particle searches as well.

18Like QED processes have been used in lepton-lepton and lepton-hadron accelerators.
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How can future experiments help global QCD analysis?

As reviewed in Sec. 6.4, many gaps and uncertainties still remain in our knowledge of the nucleon
PDFs. The next generation hadron collider experiments can be very useful in filling these gaps.
The main reason is, these new experiments can be considered as “W/Z Factories”. Using these
weak bosons as probes, along with final state real and virtual photons, the new precision QCD
measurements will provide experimental constraints quite complementary to those from DIS exper-
iments, in the global analysis of parton distributions. In this sense, the W/Z experiments will be
the “DIS experiments” of the next decade. More specifically,

Precision PQCD phenomenology to study u, d, ū, d̄ and G: Beyond the W/Z total cross sections
and MW measurement, there are a full range of precise measurements which will advance the
determination of the dominant partons, especially with both pp̄ and pp colliders: the rapidity
distribution of W/Z dσW,Z/dy (sensitive to u, d, ū, d̄; W/Z plus jet(s) (sensitive to G as well as u, d

quark); direct photon (sensitive to G, less hindered by kT broadening at high energies); . . . etc.

Unique probe for s/c/b quarks: We mentioned in Sec. 6.4 that current knowledge on s(x), s̄(x) is
not conclusive, and on c(x), b(x) is almost non-existent. The hadron collider experiments promise
unique opportunities to clarify these situations. If it is possible to tag heavy particle final states
in association with vector boson production, then the parton subprocesses depicted in Fig. 44
will enable the selective measurement of each of the s/c/b distributions. In a realistic study, these
simple “LO” processes must be considered along with “NLO” (quotations because of considerations
discussed in Sec. 5.6) processes such as gg → W +s+c, . . . etc.56 But those are details which needn’t
concern us in this broad review.

Figure 44: Parton subprocesses which may allow the measurement of the strange, charm and bottom quark distribu-

tions in the next generation of hadron colliders.
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7 Epilogue

Perturbative QCD was where the amazing story of Quantum Chromodynamics begins. With this
modest, but already quite unbelievably rich, beginning, let us see what the world of non-perturbative
QCD holds for us.
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