MEMO

Flasher Board-Main Board Interface Requirements

May 19, 2003 Nobuyoshi Kitamura

This memo contains all the known interface requirements. The contents of sections 3.1.1 thru 3.1.3 of FlasherboardERD 0.01d are to be updated according to the specifications given here.

1 Mechanical

1. Flasher Board shall be an annular-shaped circuit board.
2. Flasher Board shall be screw-mounted to the PMT collar at three locations near the ID.
3. Flasher Board shall provide a mechanism for mounting the Main Board underneath it.
4. Flasher Board shall support the weight of the Main Board and the Delay Board.
5. Flasher Board shall provide a board area for the Passive PMT Base support devices.

2 Electrical Connections

1. Flasher Board shall make logic signals, power and ground connections with the Main Board through a board-to-board connector.
 (a) Said connector is as specified elsewhere.
 (b) Said connector pinouts are as specified elsewhere.
 (c) Said connector location and orientation on board are as specified elsewhere.
2. Flasher Board shall make a coaxial-cable connection to the Main Board for the purpose of carrying the flasher timing pulse (defined elsewhere).
 (a) Said coaxial-connection cable shall be of the type specified elsewhere.
 (b) Said coaxial-connection shall have a connector, specified elsewhere, on either end.

3 Electrical Power

1. Flasher Board shall receive electrical power from the Main Board.
(a) Said electrical power source shall be +5V, -5V, +3.3V, +1.8V and +90V.
(b) The +5V and –5V sources shall have a voltage uncertainty of no greater than ±5%.
(c) Specifications for the +3.3V source shall be defined elsewhere.
(d) Specifications for the +1.8V source shall be defined elsewhere.
(e) Specifications for the +90V source shall be defined elsewhere.

2. The combined power consumption by the Flasher Board from the +5V, -5V, +3.3V and +1.8V power sources shall be no greater than (TBD).

3. The power consumption of the Flasher Board from the +90V power source shall be no greater than (TBD).

4. The entire Flasher Board shall be powered ON or OFF by a single-bit digital command (pin #24) issued by the Main Board.

4 Ground

1. There shall be a common power ground for the low-voltage DC power sources (+1.8V, +3.3V, +5V and –5V).
2. There shall be a separate power ground for the +90V power source (pin #47).
3. Signal ground shall be the same as the power ground for the low-voltage DC power sources.

5 Digital Signals

1. Clock—The Main Board shall provide the clock signals to the Flasher Board.
 (a) The clock shall be a LVDS differential pair (pins 2, 3).
 (b) The clock frequency shall be (TBD).
 (c) The clock shall be provided for a general purpose and shall have no definite timing relationship with the rest of the digital signals. (Note: Specifically, no clear timing relationship with nWR and nRD.)

2. Digital signal standard—The digital signals, other than the clock signals, shall comply with the 3.3V CMOS standard.

3. Digital communication
 (a) Flasher Board shall digitally communicate with the Main Board using the following signals:
 o A 6-bit-wide address bus
 o An 8-bit-wide data bus
 o An active-low read strobe (nRD)
4. LED Flasher Control Signals
 (a) Pre-trigger—The Main Board shall assert this signal
 at least \((\text{TBD}) \) seconds prior to issuing the trigger
 command.
 (b) Trigger—The trigger command issued by the Main
 Board shall be a differential pair of digital signals,
 each signal of the pair complying with the same
 standard as the rest of the digital signals.

5. JTAG—The Flasher Board firmware shall be programmable by
 the Main Board.
 (a) The supported JTAG signals shall be TCK, TDO, TDI
 and TMS.
 (b) Flasher Board shall provide a pull-up resistor for the
 JTAG signals.
 (c) The JTAG ports shall be enabled for programming
 when the Main Board asserts JTAG_EN signal pin
 (pin #33).

6. Logical and Functional

 1. Flasher Board shall have an internal address space that is
 accessible by the Main Board.
 2. Said address space shall be accessible using the address bus, the
 data bus, read strobe and write strobe, defined above.
 3. Said address space is as defined elsewhere.
 4. Each address location is readable, writable or both for the Main
 Board.
 5. All the functionality of the Flasher Board shall be controlled by the
 Main Board, according to a predefined sequence of write
 operations to and read operations from the internal address space
 of the Flasher Board.
 6. The sequences of read and write operations required to operate the
 Flasher Board for individual functionality shall be carried out by a
 program code running on the Main Board.