# Event Selection with a Boosted Decision Tree



Warren Huelsnitz University of Maryland





- Reference: tmva.sourceforge.net/docu/TMVAUsersGuide/pdf
- Theoretical optimal performance of BDT not as good as some other classifiers. But, easy to get reasonably good results with a BDT.
- Straight cuts carve out a "signal-like" hypercube in multidimensional parameter space; BDT finds multiple hypercubes.
- BDT does not find functional dependencies between parameters, such as a properly set-up neural net would, (but you can specify functional dependencies among variables when you provide the input variables and expressions).





- User specifies:
  - Signal and background event input files
  - Signal and background event weights
    - Overall for signal and for background
    - Can also use expressions for variable event weights
  - Input variables (can also be expressions of variables)
  - Number of training signal and background events







- Can also specify allowed ranges for variables
  Several options for growing of forest, such as
  Number of trees in forest
  Various node splitting criteria
  - Pruning
  - Min events per node
  - Max # split levels
  - Decorelation of variables
  - Boosting method







- Boosting stabilizes the response of the classifier to fluctuations in the training sample:
  - AdaBoost: increase weights of events misclassified in current tree before next tree is created
  - Bagging: resampling with replacement
- Final decision is based on a (weighted) majority vote of the individual trees:

$$Y_{BDT}(\tilde{x}) = \sum_{i \in forest} \ln(\alpha_i) \cdot h_i(\tilde{x})$$

 $Y_{BDT}$  = BDT score for the event

 $\tilde{x}$  = values of the input variables for the event

 $\alpha_i$  = fraction correctly classified in tree *i* 

 $h_i$  = decision result of tree *i* (1 if in "signal" node, 0 if in "background" node)

 Output score is normalized to values between 0 and 1; you decide what value of the BDT score to cut on

000000000000



## Application to IC40 Atmospheric Neutrinos







## Application to IC40 Atmospheric Neutrinos



- Two BDT's used:
  - Both BDT's reject all background
  - Event retained if it passes either BDT
- Boosted Decision Tree Cut: (BDT1 || BDT2)
- BDT variables:
  - Parab\_sigma
  - Rlogl
  - PLogl
  - SmoothAll
  - NDirC
  - LDirC
  - NDirC/NHits
  - Bayes\_Logl Logl
  - Umbrella\_Logl Logl
  - SingleLLH\_Zenith LF\_Zenith
  - NChannel
  - Nstring (BDT #1 only)
  - LF Geo and Time Split Track Zeniths (BDT #1)
  - LF and SPE16 Geo and Time Split Track Zeniths (BDT #2)







## **BDT Scores for Data**

#### BDT Scores for Burn Sample (top) Zoomed in to region of interest (bottom)



8





## Net Efficiency of the Boosted Decision Trees (for ~100% purity)









#### Data and NuGen, after BDT





4/27/2009





## Variables before BDT Cut Corsika(Red) and Data(Green)







## Variables before BDT Cut Corsika(Red) and Data(Green)







## Variables before BDT Cut Corsika(Red) and Data(Green)





4/27/2009



## Variables after BDT Cut NuGen(Blue) and Data(Green)





4/27/2009



## Variables after BDT Cut NuGen(Blue) and Data(Green)





#### 4/27/2009



## Variables after BDT Cut NuGen(Blue) and Data(Green)





4/27/2009