ATMOSPHERIC NEUTRINOS

Atmospheric v events

Parameters useful for v oscillation studies

• Flavor ratio $v_e + 1/3$ anti- $v_e / v_{\mu} + 1/3$ anti- v_{μ} For $E_V < 30$ GeV ~5%

Shape of the angular distribution of HE neutrinos

Uncertainties:

1) $\delta(V/H)/(V/H) \sim 0.12 \, \delta(K/\pi)/(K/\pi)$ $L_{dec} \sim 0.75 \, (E(GeV)/100) \, \text{km} (K)$ $L_{dec} \sim 5.6 \, (E(GeV)/100) \, \text{km} (\pi)$ almost all K decay up to high energies (> 100 GeV) almost isotropic competition of interaction/decay for π^{\pm} : decay more easily at horizon for increasing energy \Rightarrow horizontal > vertical flux. Flux from Kaons isotropic up to energies higher than pions 2) $\delta(V/H)/(V/H) \sim 0.25 \, \delta\alpha$

uncertainty in the slope of primary flux 3) Seasonal variations

In quadrature: ~3% error on V/H

The atmospheric v problem: measured flavor ratio

Flavor ratio:

$$R = \frac{\left(\frac{\mu - like}{e - like}\right)_{DATA}}{\left(\frac{\mu - like}{e - like}\right)_{MC}}$$

$$\mu$$
-like (tracks): deficit

µ-like (tracks): deficit e-like (showers): in agreement with expected

Kamiokande Multi-GeV: flavor ratio angular dependence as expected from oscillations

Oscillations in Atmospheric Neutrinos

SK results

MACRO at Laboratori Nazionali del Gran Sasso

Tracking with Streamer Tubes

Streamer tube chambers:

- •20000 m² of 3x3 cm² x 12 m cells with 100 μ m Cu-Be wire
- •Gas mixture: He + n-pentane (27%)
- Pick-up strips for stereo track reconstruction
- Intrinsic angular resolution ~0.2°

Time Of Flight technique

Scintillators:

• 600 tons of liquid scintillator (mineral oil+ pseudocumene+ wls) in 12 m-long boxes;

clear PVC

window

8" PMTs

mirror

•time resolution ~700 ps;

•calibration tools: atmospheric µs, Light Emitting Diodes, laser light;

•200 MHz Wave Form Digitizers for pulse shape analysis;

Through going muons

Similar results for SK

The oscillation pattern

The binning choise is critical

SK v_{μ} compared to predictions for oscillations

vdecay and decoherence

Hep-ex/0404034

K2K

KEK to Kamioka (L = 250 km): v beam from 12 GeV protons accelerated by the KEK proton synchrotron on alluminium target 98% pure muon neutrinos with mean energy 1.3 GeV

First results: PRL 90 (2003)041801 (data from Jun 1999-Jul 2001 4.8 10^{19} P.O.T.) Events in SK in time coincidence inside 1.5 µs (reduce atm v background in 22.5 kton SK fiducial volume to 10^{-3}) Measured: 56 (Expected: $80.1^{+6.2}_{-5.4}$) and in Feb 2004 108 measured 150.9 ±11 predicted

Observables to infer oscillations: energy spectrum and normalization

Atmospheric neutrino results

Results for atmospheric neutrinos

Figure 7: Left: 90% C.L. allowed region contours for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations obtained by the Super-Kamiokande, MACRO and Soudan-2 experiments [29]. Right: Allowed region contours for ν_{μ} disappearance obtained in the K2K experiment confronted with the allowed regions for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations obtained in the Super-Kamiokande experiment [151].

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

If $\theta_{13} = 0 \Rightarrow c_{13} = 1$ and $s_{13} = 0$ and $\delta = 0$ and for normal hierarchy

$$U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12}c_{23} & c_{12}c_{23} & s_{23} \\ s_{12}s_{23} & -c_{12}s_{23} & c_{23} \end{pmatrix} = \begin{pmatrix} c_{sol} & s_{sol} & 0 \\ -s_{sol}c_{atm} & c_{sol}c_{atm} & s_{atm} \\ s_{sol}s_{atm} & -c_{sol}s_{atm} & c_{atm} \end{pmatrix} \qquad \theta_{12} \approx 35 \deg \Rightarrow c_{sol} = 0.82 \text{ and } s_{sol} = 0.57$$

$$U = \begin{pmatrix} c & s & 0 \\ -sx & cx & x \\ sx & -cx & x \end{pmatrix} = \begin{pmatrix} 0.82 & 0.57 & 0 \\ -0.4 & 0.58 & 1/\sqrt{2} \\ 0.4 & -0.58 & 1/\sqrt{2} \end{pmatrix}$$

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = \sum_{i,j} U_{\alpha,i} U_{\beta,i}^{*} U_{\alpha,j}^{*} U_{\beta,j} e^{-i\Delta m_{i,j}^{2}L/2E} \qquad \Delta m_{atm}^{2} \approx 8 \cdot 10^{-5} eV^{2}$$
$$\Delta m_{atm}^{2} \approx 2.5 \cdot 10^{-3} eV^{2}$$

If CP is conserved ($\delta = 0$) this expression can be written as (U is a real matrix):

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i} |U_{\alpha,i}|^2 |U_{\beta,i}|^2 + 2\sum_{i < j} U_{\alpha,i} U_{\beta,i} U_{\alpha,j} U_{\beta,j} \cos\left(\frac{\Delta m_{ij}^2 L}{2E}\right).$$

For astrophysical sources L>kpc and Δm^2 L/2E » 1.

Let's give a typical number to the phase factor for a source at a distance of 1 kpc emitting neutrinos of 10 TeV: $\Delta m^2 \rightarrow (D^2) = (10 \text{ TeV})$

$$\varphi = \frac{1.27L(km)\Delta m_{12}^2(eV^2)}{E(GeV)} \approx \frac{1.27 \cdot 3.1 \cdot 10^{16} \cdot 8 \cdot 10^{-5}}{10^4} \approx 3 \cdot 10^8 \qquad \qquad \varphi \sim 3 \cdot 10^8 \left(\frac{\Delta m}{8 \cdot 10^{-5} \text{ eV}^2}\right) \left(\frac{D}{1 \text{ kpc}}\right) \left(\frac{10 \text{ Tev}}{E_{\nu}}\right)$$

Let us assume that an experiment measures the events in a small energy bin so that we can consider approximately constant the energy E, then the oscillating term is given by const x cosL, so the term averages to zero. As a matter of fact, his value means that if the distance of the source (or eventually the energy) of the emitted neutrinos is not known with a precision of 10⁸ the oscillating term averages to zero. Since sources have extensions of about 1 pc and their distance is > 1 kpc their distance are known with precision 1/1000!! Also the energy is about 30% uncertain.

Hence for astrophysical sources L>kpc: the uncertainties on distances to sources and on their dimensions eliminate the effect of the phase term.

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum_{i} |U_{\alpha,i}|^{2} |U_{\beta,i}|^{2}$$
Eg.
$$P(\nu_{e} \rightarrow \nu_{e}) = \sum_{i} |U_{ei}|^{2} |U_{ei}|^{2} = |U_{e1}|^{4} + |U_{e2}|^{4} + |U_{e3}|^{4} = 0.82^{4} + 0.57^{4} + 0 = 0.56$$

$$P(\nu_{e} \rightarrow \nu_{\mu}) = \sum_{i} |U_{ei}|^{2} |U_{\mu i}|^{2} = |U_{e1}|^{2} |U_{\mu 1}|^{2} + |U_{e2}|^{2} |U_{\mu 2}|^{2} + |U_{e3}|^{2} |U_{\mu 1}|^{2} = 0.82^{2} \cdot 0.4^{2} + 0.57^{2} \cdot 0.58^{2} + 0 = 0.22$$

$$P(\nu_{e} \rightarrow \nu_{\tau}) = \sum_{i} |U_{ei}|^{2} |U_{\pi i}|^{2} = |U_{e1}|^{2} |U_{\pi 1}|^{2} + |U_{e2}|^{2} |U_{\pi 2}|^{2} + |U_{e3}|^{2} |U_{\pi 1}|^{2} = 0.82^{2} \cdot 0.4^{2} + 0.57^{2} \cdot 0.58^{2} + 0 = 0.22$$

$\nu_{\alpha} \nu_{\beta}$	ν_{e}	v_{μ}	ν_{τ}
ν_{e}	60%	20%	20%
\mathbf{v}_{μ}	20%	40%	40%
ν_{τ}	20%	40%	40%

$v_{\alpha} v_{\beta}$	v_{e}	\mathbf{v}_{μ}	ν_{τ}
ν_{e}	60%	20%	20%
ν_{μ}	20%	40%	40%
ν_{τ}	20%	40%	40%

So for $v_e: v_{\mu}: v_{\tau} = 1:2:0$: for $v_e 60\%$ comes from v_e survival and 2*20% from 2 v_{μ} conversion =>100%. For 2 v_{μ} 2*40% =80% comes from v_{μ} survival, then 20% from v_e that become $v_{\mu} =>$ 100% v_{τ} will appear after 20% of $v_e + 2*40\%$ of $v_{\mu} =$ 100%

For n decay $n \rightarrow p + e^- + \overline{v}_e$ from the Galactic Centre at L~10 kpc anti-electron neutrinos convert according the same matrix into 20% muon neutrinos and 20% tau neutrinos. And 60% electron neutrinos will remain such.

Suggested Readings

Textbooks

Halzen and Martin, Quarks and Leptons, An Introductory Course to Modern Physics, Wiley 1984

B.R. Martin and G. Shaw, Particle Physics, Manchester Physics Series (1987)

- Perkins, Introduction to High Energy Physics, Addison-Wesley, 1987
- L. Bergstrom and A. Goobar, Cosmology and Particle Astrophysics (2nd edition), Springer 2004 cap 6

Neutrino people do not miss

http://www.nu.to.infn.it/

http://www.nu.to.infn.it/pap/0310238/ (neutrino mixing)

Feldamn and Cousins, Unified approach to the classical statistical

analysis of small signals, Phys. Rev. D 57 (1998) 3873

http://prola.aps.org/abstract/PRD/v57/i7/p3873_1

http://pdg.lbl.gov/2005/reviews/solarnu_s005313.pdf (solar neutrinos)