Neutrino astronomy and telescopes

Crab nebula

Cen A

Overview

- → Neutrinos and their properties (done)
- Neutrino astronomy and connections to Cosmic rays and gamma-astronomy
- Neutrino sources and neutrino production
 - SN collapse and nutrino burst
- → Neutrino telescopes and detection technique
 - Search Methods
 - Current experimental scenario

Teresa Montaruli, Apr. 2006

Suggested references

- Halzen and Hooper, Rept.Prog.Phys.65:1025-1078,2002
- Learned and Mannheim,
 - Ann.Rev.Nucl.Part.Sci.50:679-749,2000
- Burgio, Bednarek, TM, New Astron. Rev. 49, 2005 (galactic point sources)
- http://arxiv.org/PS_cache/astro-ph/pdf/0405/0405503.pdf (GRBs)
- Books: Longair, High Energy Astrophysics Berezinski, Neutrino Astrophysics 1995
- For all neutrino related information always look in http://www.nu.to.infn.it/
- These transparencies:

http://www.icecube.wisc.edu/~tmontaruli/801.html

The idea

vs are weekly interacting \Rightarrow require large target mass and conversion into charged particle <u>Markov/ Greisen idea (1960)</u> Target is surrounding matter $M = \rho R_{\mu} S (E_{\mu} = 1 \text{ TeV} : R_{\mu} = 2.5 \text{ km})$ Events are upgoing

M.Markov (1960): idea to construct large deep underwater Cherenkov detectors for neutrino astrophysics using water masses of natural basins. Era of underwater neutrino telescopes started

Water/ice used as:

shield to protect of atmospheric muons
 target in which neutrino interaction occurs
 detecting medium where the Cherenkov light is emitted

Upgoing muons: much larger interaction volume than what is in the instrumented region

Teresa Montaruli, Apr. 2006

Cherenkov Photons

Muon neutrinos are the only topology to allow source pointing But since vs oscillate other topologies should be considered that allow to observe upper sky

43°

Energy losses

Ionization and atomic excitation: interactions with electrons in the media continuous process mip: particles at the minimum of ionization 2 MeV/g/cm²

Teresa Montaruli.

Radiative: discrete process and stochastic Bremmsstrahlung: radiation emitted by ar accelerated or decelerated particle throug the field of an atomic nuclei Energy emitted $\propto 1/m^2$ Pair production: μ +N \rightarrow e⁺e⁻ Photonuclear : inelastic interaction of muons with nuclei, produces hadronic showers

Muons and Taus

Bremsstrahlung $\propto 1/m^2 <<$ important than photonuclear for taus

The target mass

-dE/dx = a(E) + b(E)E

 $R_{max}(E_I, E_I^{min}) = \int dX P_{surv}(E_I, E_I^{min}, X)$

IonizationStochastic losses~2 MeV/g/cm² (dominate > 1TeV)

$$R_{\mu} = \int_{0}^{E} \frac{dx}{dE} dE \approx \int_{0}^{E} \frac{1}{a+bE} dE = \frac{1}{b} \log(1+E/E_{c})$$

 $E_c = a/b$

Teresa Montaruli, Apr. 2006

Neutrino interactions on nucleons

The DIS total cross section

For antineutrinos $q \leftrightarrow q$ and above 10^5 GeV cross sections are equal since the interactions on sea quarks dominate over valence ones

Quark contribution

The parameter space cut on invariant mass of hadronic HERA x ~10⁻⁵ system $W^2 = Q^2/X 2 - 10^8 \text{ GeV}^2$ Antares simulation 'x vs Q²' log,₀[x] Double Asymptotic Scaling =structure function depend - " only on a variable $\sigma(x,Q^2)$ -Large Q² small x: $\sigma \propto \ln(1/x)^* \ln Q^2$ -2 Calculations not possible for non perturbative region -3 $\exists low x and small Q2$ -4 DIS $\exists Q^2 = 2MxyE_v$ -5 O.E. $\exists x = Q^2/(2Mv)$ Other channels $y = (E_v - E_1)/E_v =$ -6 v/E_{v} Т -2 5 $\log_{10}[Q^2 (GeV^2)]$ $\dot{\text{CTEQ6-D}}$: 10⁻⁶ < x < 1 1.3 < Q < 10⁴ GeV

Neutrino interactions on electrons

Glashow resonance 6.3 PeV

Neutrino absorption in the Earth

NC interactions $v_{\mu} + N \rightarrow v_{\mu} + X$

 $\sigma_{\rm CC}$ ~ 3 $\sigma_{\rm NC}$ Similarly to v_e and v_τ CC, NCs for all flavors produce showers.

$$P^{0}(x,Q^{2}) = \left[\frac{u_{v}(x,Q^{2}) + d_{v}(x,Q^{2})}{2} + \frac{u_{s}(x,Q^{2}) + d_{s}(x,Q^{2})}{2}\right] (L_{u}^{2} + L_{d}^{2}) + \left[\frac{u_{s}(x,Q^{2}) + d_{s}(x,Q^{2})}{2}\right] (R_{u}^{2} + R_{d}^{2}) + (11) [s_{s}(x,Q^{2}) + b_{s}(x,Q^{2})] (L_{d}^{2} + R_{d}^{2}) + [c_{s}(x,Q^{2}) + t_{s}(x,Q^{2})] (L_{u}^{2} + R_{u}^{2})$$

$$\overline{q}^{0}(x,Q^{2}) = \left[\frac{u_{v}(x,Q^{2}) + d_{v}(x,Q^{2})}{2} + \frac{u_{s}(x,Q^{2}) + d_{s}(x,Q^{2})}{2}\right] (R_{u}^{2} + R_{d}^{2}) \\ + \left[\frac{u_{s}(x,Q^{2}) + d_{s}(x,Q^{2})}{2}\right] (L_{u}^{2} + L_{d}^{2}) +$$
(12)
$$\left[s_{u}(x,Q^{2}) + b_{u}(x,Q^{2})\right] (L_{u}^{2} + R_{d}^{2}) + \left[s_{u}(x,Q^{2}) + b_{u}(x,Q^{2})\right] (L_{u}^{2} + R_{d}^{2})$$

 $+ R_d + [c_s(x, Q^-) + t_s(x, Q^-)](L_n)$

$$L_u = 1 - \frac{4}{3}x_W \qquad L_d = -1 + \frac{2}{3}x_W R_u = -\frac{4}{3}x_W \qquad R_d = \frac{2}{3}x_W$$

 $\frac{d^2\sigma}{dxdy} = \frac{G_F^2 M E_\nu}{2\pi} \left(\frac{M_Z^2}{Q^2 + M_Z^2}\right)^2 \left[xq^0(x,Q^2) + x\overline{q}^0(x,Q^2)(1-y)^2\right],$

NC interactions $v_{\mu} + N \rightarrow v_{\mu} + X$

Most of neutrino telescopes cannot distinguish if they are hadronic (~20% more light) or em

