Physics 801: Instrumentations and Methods in Astroparticle Physics

Prof. Teresa Montaruli
 Chamberlin Hall, Room 4112
 ontarul@icecube.wisc.edu
 http://www.icecube.wisc.edu/~tmontaruli

Lectures: Tue-Thu 11:00-12:15
Office Hours: send me an email to fix a time or after lectures

Course Contents

Introduction to Special Rellativity and Particle Physics Interaction of radiation with Matter Particle Detectors
Gosmic. Rays. (examplès of detectors)
Gàmma Astronomy (example of detectors)
Neutrino Astronomy and Neutrino Telescopes
Cosmology: Dark Matter and Gravitational Waves

Why Astroparticle?

Astroparticle: cross-disciplinary area (astrophysics, high energy particle physics, plasma physics) . Meeting point between

Physicists: extended understanding of matter down to quark level that compose neutrons and protons and leptons (electrons, muons, taus and their neutrinos partners) and described how forces shape matter

Astronomers: observed
Expansion of the Universe
Cosmic Microwave Background Radiation: the echo of the big bang that provides a snapshot of the universe when it was $1 / 2$ million yrs old measured the relative abundance of light elements in the Universe $\left(\mathrm{H}, \mathrm{Li},{ }^{2} \mathrm{H}\right.$, He) produced in nuclear reactions in the first seconds of the universe life in the quantity predicted by the Big Bang globular clusters and some radioactive isotopes do not seem to exceed an age 13-14 billion of yrs from now

Open questions

All questions address to the understanding of the Universe.
Existing models describe its evolution down to 10^{-43} seconds
Physicists are building the largest collider LHC at CERN (1011 particles/bunch, 600 million collisions/s at 7 TeV in $\mathrm{CM}, 10$ times more powerful than Tevatron and LEP) which will bring protons/ions in head on collisions reproducing the conditions of the early universe $10^{-11} \mathrm{~s}$ after the Big Bang. They will discover new particles, possibly composing the dark matter and complete the understanding of building blocks of matter. Other fundamental questions: neutrino mass and Majorana/Dirac. Still one familiar interaction, gravitation, that is not formulated as a relativistic quantum field theory
have found that the Universe is speeding up in its expansion after the Big Bang due to the mysterious Dark Energy. What is it? Why there is much less antimatter than matter? What is the Dark matter?

You are lucky! Will see the re-birth of Physics

The building blocks of Matter and interacting Forces

FERMIONS mater constivens $\operatorname{spin}=1 / 2,3 / 2,512, \ldots$

Quarks spin = 1/2		
Flasor	Apprax Mess Cevic	Electric tharge
Uup d down	$\begin{aligned} & 0001 \\ & 0006 \end{aligned}$	$\begin{gathered} 2 / 3 \\ -1 / 3 \end{gathered}$
C charm 5 strange	1,3 0.1	$2 / 3$ $-1 / 3$
t top b bottom	175 4.3	$2 / 3$ $-1 / 3$

BOSONS
Unified Electrowerak spin $=1$

Name	Mess Gevic	Electic charg
photen	0	0
W^{-}	80.4	-1
W^{+}	80.4	+1
Z^{0}	91.187	0

Tores carriers spin $=0,1,2, \ldots$

Strane (celer) spin $=1$		
Mame	Pasy thentis	Hestr thare
	0	0

PROPERTIES OF THE INTERACTIONS

Notions of Special Relativity

Inertial frames: a body not subject to any force remains at rest or in steady rectilinear motion
Two postulates:
The laws of physics have the same form in any inertial frame The velocity of light in vacuum $\mathbf{c}=2.99793 \times 10^{8} \mathrm{~m} / \mathrm{s}$ has the same value in all inertial frames
Space-time coordinates: $\mathrm{x}^{\mu}=(\mathrm{ct}, \mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{ct}, \mathrm{r})$ (4-vectors)
From 2) if we consider the same light ray in the 2 ref systems K and K' and look at the time difference $\Delta t, \Delta t^{\prime}$ of its passage through the distance $|\Delta r|,\left|\Delta r^{\prime}\right|$, the velocity of light must be the same

$$
c=\frac{|\Delta \mathbf{r}|}{\Delta t}=\frac{\left|\Delta \mathbf{r}^{\prime}\right|}{\Delta t^{\prime}}
$$

Hence the combination (the line element) $\quad \Delta s^{2}=c^{2} \Delta t^{2}-|\Delta \mathbf{r}|^{2}=c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}$
is invariant in 2 different reference frames
In analogy to rotations that leave invariant the length of a vector \mathbf{x}, namely also its square $x^{2}+y^{2}+z^{2}$, the quantity $s^{2}=c^{2} t^{2}-x^{2}-y^{2}-z^{2}$ is an invariant.
This suggests that x, y, z, t can form a 4 vector in this 4 -dimensional space that transforms according to Lorentz transformations with
$x_{0}=c t, x_{1}=x, x_{2}=y, x_{3}=z$
5/21/06

Casual structure of space-time

$$
\Delta s^{2}=c^{2} \Delta t^{2}-|\Delta \mathbf{r}|^{2}=c^{2} \Delta t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}
$$

For a light ray: $\Delta \mathbf{s}^{2}=0$ light-like separation
A system in which 2 events happen at the same time $(\Delta t=0)$ can be found only if $\Delta s^{2}<0$ space-like separation
A system in which 2 events happen at the same place can be found only if $\Delta s^{2}>0$ time-like separation

The light cone respect to an event A in the origin of an inertial ref frame at time $\mathrm{t}=0$
is defined by $\Delta s^{2}=0$ (Δs is the
distance respect to another event)
Points in the light cone (B) have
$\triangle s^{2}>0$ and are casually connected
to the observer since $c \Delta t>|\Delta r|$
so that they can be connected
by signals traveling at speed $<\mathrm{c}$
Events outside (C) the ight cone $\triangle s^{2}<0$ are casually disconnected

Galilean transformations

Moving frame

Galilean

Transformation

$$
\begin{aligned}
& x^{\prime}=x-v t \\
& y^{\prime}=\underline{y} \\
& z^{\prime}=z \\
& t^{\prime}=t
\end{aligned}
$$

The primed frame moves with velocity v in the x direction with respect to the fixed reference frame.
The reference frames coincide at $t=t$ ' $=0$.
The point x is moving with the primed frame.
The Galilean transformation gives the coordinates of the point as measured from the fixed frame in terms of its location in the moving reference frame.

The Galilean transformation is the common sense relationship which agrees with our everyday experience.

Lorentz transformations

Transformations between reference systems: K' moves at velocity v = const respect to K. Due to its invariance:

$$
\begin{aligned}
& \Delta s^{2}=-\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-c^{2} \Delta t^{2}\right)=-\left(\Delta x^{\prime 2}+\Delta y^{\prime 2}+\Delta z^{\prime 2}-c^{2} \Delta t^{\prime 2}\right) \\
& \Delta s^{2}=-\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}+\Delta \tau^{2}\right)=-\left(\Delta x^{\prime 2}+\Delta y^{\prime 2}+\Delta z^{\prime 2}+\Delta \tau^{\prime 2}\right) \text { with } \tau=\text { ict with } \mathrm{i}^{2}=-1
\end{aligned}
$$

Transformations leaving $\Delta \mathrm{s}^{2}$ invariant are rotations (let's consider the rotation in $\mathrm{x} \tau$ plane $-\mathrm{y}, \mathrm{z}$ stay constant). The transformation must be of the form
$\left\{\begin{array}{l}x=x^{\prime} \cos \alpha-\tau^{\prime} \sin \alpha \\ \tau=x^{\prime} \sin \alpha+\tau^{\prime} \cos \alpha\end{array}\right.$
To determine α : we are in K and observe the origin of $\mathrm{K}^{\prime}\left(x^{\prime}=0\right)$ moving at velocity v along $\mathrm{x}(\mathrm{x}=\mathrm{vt})$

Lorentz transformations

$\left\{\begin{array}{l}x=-\tau^{\prime} \sin \alpha \\ \tau=\tau^{\prime} \cos \alpha\end{array} \Rightarrow \frac{x}{\tau}=\frac{\mathrm{v}}{i c}=-\tan \alpha \equiv-i \beta \Rightarrow \beta=\frac{\mathrm{v}}{c}\right.$

$$
\left\{\begin{array}{c}
x=x^{\prime} \gamma-i \beta \gamma\left(i c t^{\prime}\right)=\gamma\left(x^{\prime}+\beta c t^{\prime}\right) \\
i c t=x^{\prime} i \beta \gamma+i c t^{\prime} \gamma \Rightarrow c t=\gamma\left(c t^{\prime}+x^{\prime} \beta\right)
\end{array}\right.
$$

$\cos \alpha=\frac{1}{\sqrt{1+\tan ^{2} \alpha}}=\frac{1}{\sqrt{1-\beta^{2}}} \equiv \gamma$
$\sin \alpha=\frac{\tan \alpha}{\sqrt{1+\tan ^{2} \alpha}}=\frac{i \beta}{\sqrt{1-\beta^{2}}} \equiv i \beta \gamma$

$$
\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
$$

Lorentz transformations

The primed frame moves with velocity v in the x direction with

$$
\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0 \\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)
$$ respect to the fixed reference frame. The reference frames coincide at $t=t^{\prime}=0$. The point x^{\prime} is moving with the primed frame.

$$
\begin{aligned}
& t^{\prime}=\gamma t-\gamma \frac{v x}{c^{2}} \\
& x^{\prime}=\gamma x-\gamma v t
\end{aligned}
$$

$$
t=\frac{t^{\prime}+\frac{v x^{\prime}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Lorentz contraction: given a rod of a length Δx in the frame at rest its length in the moving frame $\Delta \mathrm{x}$ ' looks contracted
Similarly, time dilation: in the equation for $\mathrm{t}^{\prime}, \mathrm{t}$ is multiplied by γ in the comoving frame: this is interpreted as time proceeding slower when an object is moving relative to another frame of reference (the twin paradox: 1 of 2 twin brothers undertakes a long space journey with a high speed rocket at almost the spped of light while the other stays on Earth. When the traveler returns to hearth he is younger than the twin who stayed. A Einstein 1911)

$$
\begin{aligned}
& \begin{array}{l}
x^{\prime}=\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
y^{\prime}=y \\
z^{\prime}=z
\end{array} \\
& x=\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& t^{\prime}=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \beta=\frac{\mathrm{V}}{\mathrm{c}} \\
& \gamma=\frac{1}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}}
\end{aligned}
$$

Length Contraction

$$
\begin{aligned}
& t^{\prime}=\gamma t-\gamma \frac{v x}{c^{2}} \\
& x^{\prime}=\gamma x-\gamma v t
\end{aligned}
$$

Let us measure the length of the rod $\Delta \mathrm{X}^{\prime}$ in the moving frame K^{\prime} :

The simultaneous observation takes place in S^{\prime} where $\Delta t^{\prime}=0$. We can eliminate Δt from
$\Delta t^{\prime}=0=\gamma \Delta t-\gamma \beta \Delta x / c \Rightarrow \Delta t=\beta \Delta x / c$
$\Delta x^{\prime}=\Delta x / \gamma$
$\gamma>1$ length contraction
$\Delta x^{\prime}=\gamma \Delta x-\gamma \beta c \Delta t=\gamma \Delta x-\gamma \beta^{2} \Delta x=\gamma\left(1-\beta^{2}\right) \Delta x=\frac{\gamma}{\gamma^{2}} \Delta x$

Time dilation

$$
(c t, x, y, z) \rightarrow\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

The observation takes place in S^{\prime}. The timing signals are sent from the clock at rest in S : $\Delta \mathrm{x}=0$. (Note that $\Delta \mathrm{x}^{\prime} \neq 0$!)
The result is:

$$
\Delta t^{\prime}=\gamma \Delta t
$$

The time dilatation is the same in either direction. if we measure a clock in S, which is moving with S ' we see a dilatation, too.

