Problems selected from Tipler & Mosca on Electrostatics

Ch 21 Discrete Charge Distribution

23 ee

Picture the Problem We can use Coulomb’s law to express the charge on the rod in
terms of the force exerted on it by the soda can and its distance from the can. We can
apply Newton’s 2" ]aw in rotational form to the can to relate its acceleration to the
electric force exerted on it by the rod. Combining these equations will yield an expression
for Q as a function of the mass of the can, its distance from the rod, and its acceleration.

Use Coulomb’s law to relate the kQ
force on the rod to its charge @ and F=
distance » from the soda can:

2
B
2

Solve for Q to obtain: 0- |'I AF "
ok

Apply Z T{:euter of mass — IQ’ to the FR = I{Z

can:

Because the can rolls without a

slipping, we know that its linear o= E

acceleration ¢ and angular

. , where R is the radius of the soda can.
acceleration ¢ are related according

to:
Because the empty can is a hollow I = MR*
cylinder: where M is the mass of the can.
Substitute for / and o and solve for MR*a
F to obtain: F= R =Ma
Substitute for F in equation (1): f Ma
—
=%
Substitute numerical values and [ 2 j 2
ovaluats O- 0| (0.1m)*(0.018kg)(1m/s* )

| 8.99x10°N-m’/C’

=|141nC
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Picture the Problem Let the numeral 1 refer to the charge in the 1* quadrant and the
numeral 2 to the charge in the 4" quadrant. We can use Coulomb’s law for the electric
field due to a point charge and the superposition of forces to express the field at the
origin and use this equation to solve for Q.

Express the electric field at the origin due to the point charges Q:

E(00)=F,+E,=2s + 25

"0 0
kQ : 3], kQ o 2 8m kQ -
= r—3[(—4n1]1 +(- 2[11}_]]+ F[(—éhu]r + (2111];] = —%:
=Ei
dm)k
where r is the distance from each charge to the origin and E_= —w.
-
Express r in terms of the coordinates r=4 x4y’
(x, v) of the pont charges:
Substitute to obtain: E —_ (8m)kQ
X (xz + }‘3)33'_
Solve for Q to obtain: E ( 2 .3)3"'2
- 0= X"+ y
k(8m)
Substitute numerical values and 0 (4kN IC){(él-m)z +(2m )3] 32
evaluate O: ~ (8.99x10°N-m*/C?)(8m)

—4.97,C
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Picture the Problem We can use constant-acceleration equations to express the x and y
coordinates of the electron in terms of the parameter # and Newton’s 2°¢ law to express
the constant acceleration in terms of the electric field. Eliminating the parameter will
yield an equation for y as a function of x, ¢, and m. We can decide whether the electron
will strike the upper plate by finding the maximum value of its y coordinate. Should we
find that it does not strike the upper plate, we can determine where it strikes the lower
plate by setting v(x) = 0.

Express the x and y coordinates of the X = (1-'0 cos 6')1

electron as functions of time: and
. 2
y =(v,sin &)t — Tat

Apply Newton’s 2™ Jaw to relate the a = Fety B eE,
acceleration of the electron to the net Y m, m,

force acting on it:

eE

Substitute in the y-coordinate equation . L
_ - q y = (v,sin @)t ——2¢*
to obtain: 2m,
Eliminate the parameter ¢ between the ek, .
el _ y(x)=(tanO)x ————2——x* Q)
two equations to obtain: 2m,v, cos” @
To find ypax, set dv/dx =0 for dv eE R |
) ' —=tanf-——————x
extrema: dx m,v, cos” @
=Oforextrema
Solve for x' to obtain: . mvisin2@
x'=—9"__ " (See remark below.)
2¢E.
¥
Substitute x" in y(x) and simplify to _ n'.'evﬁ sin” @
obtain Yy Smax 2eE):
Substitute numerical values and evaluate Yy,
9.11x10™ kg )(5x10° m/s)’sin’45°
) = ( g ( ) =1.02cm

y
T 2(1.6x10™ C)(3.5x10° N/C)
and, because the plates are separated by 2 cm, the electron does not strike the upper

plate.



To determine where the electron will _m,v, sin 20
strike the lower plate, set o eE,

y =0 in equation (1) and solve for x to

obtain:

Substitute numerical values and evaluate x:

_ (9.11x10 kg)(5x10° mys)’ sin 90° _

4.07cm

(L.6x107° C)(3.5%10° N/C)
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Picture the Problem We can use Coulomb’s force law for point masses and the

condition for translational equilibrium to express the equilibrium position as a function
of k, g, Q. m, and g. In part (b) we’ll need to show that the displaced point charge
experiences a linear restoring force and, hence, will exhibit simple harmonic motion.

(a) Apply the condition for
translational equilibrium to the point

mass.

Solve for yp to obtain:

(b) Express the restoring force that
acts on the point mass when it is
displaced a distance Ay from its
equilibrium position:

Simplify this expression further by
writing it with a common
denominator:

From the 1% step of our solution:

kq

——mg =0

Yo

Fo_ kQ  kqQ
(vo+Ay) s
. kqQ  kqQ
Vo +23AY Vg

because Ay << .

_ 2Y,AvkqQ
Vo +2YAY
_ 29,AvkqQ

_ i~
y§(1+2—-"]
Vo

~ _ 2AvkqQ
Yo

F =

again, because Ay << yq.

quQ =mg

Ya



Substitute to obtain: 2mg

F=— Ay
Yo
Apply Newton's 2*? law to the d EA}-' _ 2mg Ay
displaced point charge to obtain: " dr® ¥V Y
or
d’Ay 2
q} L5 Ay=0
di” ¥

the differential equation of simple

harmonic motion with | @ = x,'Z glv,

Ch 22 The Electric Field: Continuous Charge Distribution
18 -
Picture the Problem Let the charge

densities on the two plates be oy and o / /
and denote the three regions of interest as
1,2, and 3. Choose a coordinate system in

L5

which the positive x direction is to the
right. We can apply the equation for

E near an infinite plane of charge and the 1

superposition of fields to find the field in S /

each of the three regions.




(a) Use the equation for E near El -E ot E o

an infinite plane of charge to

=—2nkoyi — 27ko,i

express the field in region 1 .
=—4mkoi

when oy = o =+3 ;szrnz:

Substitute numerical values and evaluate E :

E, =—47(8.99x10° N-m*/C?)(3 sC/m? )i =| —(3.39x10° N/C)i

Proceed as above for region 2: E,=E_+E_  =21koc)i-2rko,i
2 ) ) 2

= 2rkoi —27koi =| 0

Proceed as above for region 3: E,.=FE_+F_ =2rkoi+2rko,i
1 2 =

~

= 4rkoi
= 47(8.99x10° N - m*/C? (3 pC/m )i

—| (3.39x10° N/C)i

+o tar

The electric field lines are shown - —_—
to the right:
_— —
E; E:
- E—
- — =
(b) Use the equation for E near E | = E ot E o, = 27k0i — 27k o,i

an infinite plane of charge to o s
P 5 = 2ot — 27kt = 0

express and evaluate the field in
region 1 when oy =43 ,qu’m2 and
o =-3 ;:Cfmﬁ:
Proceed as above for region 2: EL = Ea + E‘gﬂ = 27;}(0-1; + 27:?(0'2;

= drkoi

= 47(8.99x10° N-m*/C? )(3 1C)i

= (3.39x10° N/C)i
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Picture the Problem The magnitude of the electric field on the axis of a ring of charge
is given by E| ().) = kQx ;/()‘_2 +a’ )3;3 where Q is the charge on the ring and a is the
radius of the ring. We can use this relationship to find the electric field on the x axis at

the given distances from the ring.

Express E on the axis of a ring charge: E (a) _ kOx

(a) Substitute numerical values and evaluate E, for x = 1.2 cm:

19 2 2
(8.99x10°N m /C )(2-75fg)2(1-2c“1): 4.69x10° N/C
(1.2em) +(8.5 cm)‘]

E (1.2cm)=

(b) Proceed as in (a) with x = 3.6 cm:

99x10° N-m*/C*)(2.75 1C)(3.6cm)

=[1.13x10° N/C
[(3 6cm) +(8.5cm) ]

E_(3.6cm)= s

(¢) Proceed as in (a) with x = 4.0 m:

(8.99x10° N-m*/C?)(2.75 4«C)(4 m)

- T =|1.54x10° N/C
[(4n1)h +(8.5cm) ]

E_T(4m):

(d) Using Coulomb’s law for the E (A) _ kQ
electric field due to a point charge, ! x?

express E;:



:i:d: P
Determine the Concept The charges on a conducting sphere, in response to the repulsive
Coulomb forces each expenences, will separate until electrostatic equilibrium conditions

exit. The use of a wire to connect the two spheres or to ground the outer sphere will cause
additional redismbution of charge.

() Because the outer sphere 1s condueting, the field in the thin shell must vanish.
Therefore, —20, umformly distributed, resaides on the mner swrface, and —>0, wformly
distributed, resides on the outer surface.

() Now there 15 no charge on the inmer surface and —50Q on the outer surface of the

spherical shell. The electric field just outside the surface of the inner sphere changes from
a fimite value to zero.

(¢) In this case, the —50 1s drained off, leaving no charge on the outer surface and -20
on the inner surface. The total charge on the outer sphere 1s then —20.
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Picture the Problem The electric field is directed radially cutward. We can construct a
(Gaussian surface m the shape of a eylinder of radius 7 and length L and apply Gauss’s
law to find the electric field as a function of the distance from the centerline of the

mfinitely long, nmiformly charged eylindrcal shell

(@) Apply Gauss's law to a
eylindrical surface of radius r and
length L that is conceniric with the
mner conducter:

fFdA=20..

4]
or
2arlE_ = QIL‘*
EE'
where we've neglected the end areas
becanse no flux crosses them.

Solve for E.: E = 250, (1)
53 b.
Forr < 1.5em, Ogus =0 and: E,lr {1.5::111}=|E
Letting & = 1.5 cm, express Oz Qe =AL
forl5em<r<45cm = 27ciL
Substifute in equation (1) to obtain: E(15em<r<45Sem)= 2k {’E}
I - s L?.

2kA

r

Substifute numerical values and evalunate E{1 5 cm <r <4.5 em);



E.(1.5em <r <45cm)=2(8.09x10° N-m?/C*

Express Qg for
45em<r <65 cm;

Letting o represent the charge
density on the outer surface, express
(D, peise TOT 7 > 6.5 o1z

y60C/m) ‘ (108N -m/C)
! A =

F r

Qi:lmi: = D
and
E,(45ecm<r<6.5cm)=|0

Qe = 0,4, =270,R, L

where K, = 6.5 cm.

Substitute in equation (1) to obtain: El(rsR )= EHEJTU:R:LJ _o.R,
= Lr e, F
In (b) we show that ¢ = 21.2 nC/m*. Substitute numerical values to obtain:
, -~ (21.20Cm*)(6.5¢m) S6N -
E |\r>65cm)= {2_1"ﬂcf.,m ﬂ](ﬁ'xm;] _| 1o - mw/C
‘ (8.85%x10™C*/N-m’)r r
(&) The surface charge densities on -
o . G = ad o, =—0,
the mside and the outside surfaces of 2
the outer conductor are given by:
Substitute numertical values and evaluate o —6nC/m —
1 , =———=| —21.2nC/m"~
and & 27(0.045m)
and
o, =| 21.2nC/m"
5? "ee

Picture the Problem We can integrate the density function over the radius of the inner
cylinder to find the charge on it and then caleulate the linear charge density from its
defimition. To find the electric field for all values of » we can construet a Gaunssian surface
in the shape of a cylinder of radius  and length L and apply Gauss’s law to each region of
the cable to find the electric field as a function of the distance from its centerline.

(@) Find the charge 0,.,., on the
nner cylinder:

£ ic
O = | Plr)aV = [Z27wLar
17
[1] a

£
= 22CL [ dr = 27CLR

o



Relate this charge to the linear
charge density:

Substitute numernical values and
evaluate ..

() Apply Ganss's law to a
eylindrical surface of radius  and
length I that is coneeniric with the
infinitely long nonconduecting
eylinder:

Solve for E,;

Substitute to obtan, for
r<15cme

Substifute numerical values and
evaluate E (r < 1.5 cm):

Express Oy for
lsem<r<45cm:

Substite to obtain, for
l5ecm=<r<45cm:

)
O 27CIR

=2aCR

wnsr L

Aiopee = 27(2000C/m )(0.015m)

=[18.8nC/m
§ EdA- 1o
Je e E,:, imcids
or
2mlE = —Qi“"d'
Eqy

where we ve neglected the end areas
because no flux crosses them.

Q:insi.de

:}T?"L =

n

‘ | 2aCLr c
E [r<15cm)= ?.?Lr'= =
21 e, .

E,(r<15em)=—2o0nCim
885x107°C*/N-m*
=| 22 6kN/C
0. . =21CLR
- . s ]
E [l5cm<r -::4.50111]=ﬂ
) " 2me,rL
_ CR
=

where R =15 cm.

Substitute numencal values and evaluate E(1.5 cm < r < 4.5 em);

E,(15em<r<45cm)=

Becanse the ounter eylindrical shell
15 a conductor:

(200nC/m* ){0.015m) [ 339N -m/C

" (8.85x10 C¥N-m? )r r

E,(45cm<r<65cm)= @



Forr>65cm, O,.;.. =27CLR ’ . [339N.mC
d O E (r>65cem)= So7 N
and: >

Ch 23 Electric Potential

12 -
_ AV ~
Picture the Problem We can use FE = —C;—Ei to find the electric field corresponding the
x

given potential and then compare its form to those produced by the four alternatives
listed.

. . . - o - ﬁ‘(} n 6, ~
F1.11d the el.ectnc fu?lcl corresponding to F—_ oV p__C [ 4‘)(‘ + VO]I'
this potential function: ox ox
. lift x=0 |,
=42 q]i=—a " i
ox —1if x <0

—4if x>0,
= i
4if x <0

Of the alternatives provided above, only a uniformly charged sheet in the yz plane would

produce a constant electric field whose direction changes at the origin. | (¢) is correct.
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Picture the Problem For the two charges, r = ‘x - a.| and ‘.\' + a‘ respectively and the

electric potential at x is the algebraic sum of the potentials at that point due to the charges

at x = +a and x = —a.

(a) Express V(x) as the sum of the (

V=|kq

potentials due to the charges at

1+l
h—a|‘x+ﬂJ

h

x=+4a and x = —a:

(b) The following graph of V(x) versus x for kg = 1 and @ = 1 was plotted using a

spreadsheet program:

ViV)
=
T ——
e

0
3 2 1 0 1 2 3
x (m)
(c) At x =0: ﬂ: 0| and Er :_ﬂz 0
dx ' dx
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Picture the Problem We can find the potential on the x axis at x = 3.00 m by expressing
it as the sum of the potentials due to the charges at the origin and at

x =6 m. We can also express the Coulomb field on the x axis as the sum of the fields due

to the charges ¢; and ¢» located at the origin and at x =6 m.

(a) Express the potential on the x a
P I {;’(x)—k(ﬁ+q_~]

axis as the sum of the potentials due N

to the charges ¢; and ¢, located at
the origin and at

x=06m:




Substitute numerical values and

evaluate V(3 m):

(b) Express the Coulomb field on the
x axis as the sum of the fields due to
the charges ¢, and ¢, located at the
origin and at

x=6m;:

Substitute numerical values and
evaluate E(3 m):

(c) Express the potential on the x
axis as the sum of the potentials due
to the charges ¢; and ¢, located at
the origin and at

x=6m:

Substitute numerical values and evaluate
V(3.01 m):

Compute —AV/Ax:

V(x)=(8.99x10° N-m*/C?)

3uC —31C
x| F—+——
‘3m  3m

=0

E. _ kg, +kq2 :k(%+q§]

X 2 2 .
h £ h 5

E, =(8.99x10°N-m*/C?)

{ s

=| 5.99kV/m

V(x)= k(ﬁ+q—2
R

V(3.01m) = (8.99x10° N-m*/C?)
y 3uC +—3,{¢C

3.0lm 299m

=[-s599v

AV -599V -0

Ax _3.01111—3.00111
=[5.99kV/m
= E (3.00m)
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Picture the Problem We can construct Gaussian surfaces just inside and just outside the
spherical shell and apply Gauss’s law to find the electric field at these locations. We can
use the expressions for the electric potential inside and outside a spherical shell to find

the potential at these locations.

(a) Apply Gauss’s law to a spherical JJ E-dd- Qenctosea -0
Gaussian surface of radius r < 12 em: S €
because the charge resides on the outer

surface of the spherical surface. Hence

E(r <12cm)= @

Apply Gauss’s law to a spherical E(4 - rz) _4
Gaussian surface of radius €y




r>12em: and

E(r > 12(:111):7(}2 :k_zq
4rr e, r
Substitute numerical values and evaluate E (r >12cm):
8.99x10° N-m*/C* )10 C
E(r>12cm)= (8.9 - J10*C) _remrvim
(0.12m)
(b) Express and evaluate the potential just inside the spherical shell:
kg 8.99x10° N-m?*/C* )10~ C
V(rgR):—q:( — J00) v
R 0.12m
Express and evaluate the potential just outside the spherical shell:
kg (8.99x10° N-m*/C2)(107* C
V(rzR}:—q:( ~ m*/C? )10 ¢) _ 749V

r 0.12m

(¢) The electric potential inside a uniformly charged spherical shell is constant and
given by:

119 22 Y1 =8
V(réR):k_g:(S.%xlO Igﬁlnic f10°¢) 5%

In part (a) we showed that: E(r <12cm)=| 0
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Picture the Problem We can find Q by
integrating the charge on a ring of radius r
and thickness dr from » =0 to

r = R and the potential on the axis of the
disk by integrating the expression for the
potential on the axis of a ring of charge
between the same limits.

(a) Express the charge dgq on a ring

of radius r and thickness dr:

=27, Rdr

Integrate from » = 0 to » = R to obtain:

R
Q =270,R[ dr =| 270,R’
0

(b) Express the potential on the axis AV — kdg 2rkoyRdr

of the disk due to a circular element r' N
of charge dq = 2mradr :

Integrate from » = 0 to » = R to obtain: K dr
. = 27ko, R

=| 27ko,R1n

R4Jx2+R? }

X
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Picture the Problem We can express the electric potential dV at x due to an elemental
charge dq on the rod and then integrate over the length of the rod to find V(x). In the

second part of the problem we use a binomial expansion to show that, for x >> /2, our

n

result reduces to that due to a point charge Q.

dg = Adu

: « T — —o
— L2 0 L/2 ’

-~




(a) Express the potential at x due to
the element of charge dg located at

i

Integrate V from # = —L/2 to L/2 to
obtain:

(b) Divide the numerator and
denominator of the argument of the

logarithm by x to obtain:

Divide 1 + a by 1 — a to obtain:

Expand In(1 + L/x) binomially to
obtain:

Substitute to express V(x) for
x>>L/2:

point charge Q.

_kdq _ kAdu

dv

r xX—u
or, because A = Q/L,
qv = Q du

L x-u

L2
V(x):g‘[ du

L p X
kQ L2
- Tln(x —u) o

e+ L
_| kO 2
B L
L =
. 2
L . L
_r\'+? 1+2—
& | — X —
In 12 =1In —7 111(
x—= 1-—
2 2x
where a = L/2x.
. \a
ln{H—aJ—ln 1+2a+=2
l—a l—a
2
7
=In 1+£+ L
X 2_£
X

= 111[1 + E}
X

provided x >> L/2.

LY L
ln[l+—} =—
X X

provided x >> L/2.

, the field due to a

o)

1+a
l—a

)



Ch 24 Electrostatic Energy and Capacitance
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Picture the Problem We can use the expression for the capacitance of a parallel-plate
capacitor to find the area of each plate and the definition of capacitance to find the
potential difference when the capacitor is charged to 3.2 ¢C. We can find the stored
energy using U = 3 CV? and the definition of capacitance and the relationship between



the potential difference across a parallel-plate capacitor and the electric field between its

plates to find the charge at which dielectric breakdown occurs. Recall that Epyy g = 3

MV/m.

(a) Relate the capacitance of a
parallel-plate capacitor to the area A

of its plates and their separation d:

Solve for A:

Substitute numerical values and
evaluate A:

(b) Using the definition of
capacitance, express and evaluate
the potential difference across the
capacitor when it is charged to 3.2
HC:

(c) Express the stored energy as a
function of the capacitor’s
capacitance and the potential
difference across it:

Substitute numerical values and

evaluate U:

(d) Using the definition of
capacitance, relate the charge on the
capacitor to breakdown potential

difference:
Relate the maximum potential
difference to the maximum electric

field between the plates:

Substitute to obtain:

Substitute numerical values and

evaluate Qg

act

0

0.14 £F)(0.5mm) 2
A= ( -— =1 791m"
8.85x10 ¥ C*N-m’

U=1icv’

U =L1(0.144F)(22.9V) =

Qmax = CL]max
Vo = Epnd
Q.. =CE_.d

Q... = (0.14 zF)(3MV/m)(0.5mm)

[z
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Picture the Problem The capacitance of a cylindrical capacitor is given by
C=2rxe, L/ ]11(3"3 /n )where L is its length and 7| and 7, the radii of the inner and

outer conductors.

(a) Express the capacitance of the c- 2k g, L
coaxial cylindrical shell: ln( r )
Substitute numerical values and C- 2)1'(1)(8.85 x 1077 C*/N-m’ )[0 12m)
evaluate C: a 1.5cm
In
0.2mm
=|1.55pF
(b) Use the definition of 1= g _ ﬂ
capacitance to express the charge L
per unit length:
Substitute numerical values and 2= (1.55 pF)(1 .2kV) _1550C/m
evaluate A: 0.12m —
R oo

Picture the Problem When the capacitors are reconnected, each will have the charge it
acquired while they were connected in series across the 12-V battery and we can use the
definition of capacitance and their equivalent capacitance to find the common potential
difference across them. In part (b) we canuse U = %C V2 to find the initial and final

energy stored in the capacitors.

(a) Using the definition of V- 20 0
capacitance, express the potential Ceq
difference across each capacitor when where Q is the charge on each capacitor

they are reconnected: before they are disconnected.



Find the equivalent capacitance of
the two capacitors after they are

connected in parallel:

Express the charge Q on each
capacitor before they are

disconnected:

Express the equivalent capacitance
of the two capacitors connected in

series:
Substitute to find Q:

Substitute in equation (1) and
evaluate V:

(b) Express and evaluate the energy
stored in the capacitors initially:

Express and evaluate the energy
stored in the capacitors when they
have been reconnected:

Cy =G+,
=4 uF+12 uF
=16 uF

Q = C ICQE}

o~ GG _ (4uF)(124F) _
O +C, 4uF+124F

kY7

Q =(34F)(12V)=36C

23
y = 2060€) gy
16 4iF
U, =1C V7 =1(34F)12V)
U, =1C, V7 =116 4F)(4.5V)
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Picture the Problem Let the numeral 1 denote the 35-¢F capacitor and the numeral 2 the

10-4F capacitor. We canuse U =4 C qu2 to find the energy initially stored in the system

and the definition of capacitance to find the charges on the two capacitors. When the
dielectric is removed from the capacitor the two capacitors will share the total charge
stored equally. Finally, we can find the final stored energy from the total charge stored
and the equivalent capacitance of the two equal capacitors in parallel.

(a) Express the stored energy of the U=1icC qu2
system in terms of the equivalent

capacitance and the charging

potential:
Express the equivalent capacitance: C =G +C,
Substitute to obtain: U= %(Cl +C, W
Substitute numerical values and U= %(35 LF +10 1F)(100 V)’
evaluate U: _T02257
(b) Use the definition of capacitance Q,=CV =(35uF ](100V) =1 3.50mC
to find the charges on the two
) and
capacitors: . s
0,=CV= (lO,uF )100V)=|1.00mC
(c) Because the capacitors are 0=0,= %Q
connected in parallel, when the = %(3 5mC + 1mC)
dielectric is removed their charges _[225mC
will be equal; as will be their i
capacitances and:
(d) Express the final stored energy - i %
in terms of the total charge stored t7n »
and the equivalent capacitance:
Substitute numerical values and 1 (4.5mC)
| = L@SmO) e
evaluate Ug. 2 2(10 uF)
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Picture the Problem We can use the equations for the equivalent capacitance of

capacitors connected in parallel and in series to find the single capacitor that will store

the same amount of charge as each of the networks shown above.

(a) Find the capacitance of the two

capacitors in parallel:

Find the capacitance equivalent to

2Cy in series with Cy:

(b) Find the capacitance of two
capacitors of capacitance Cp in
parallel:

Find the capacitance equivalent to
2Cy in series with 2Cq:

(c) Find the equivalent capacitance
of three equal capacitors connected

in parallel:

Ceq.l = C{} + Co = ZCQ
c - CaC QGG 136
€q,~ C‘eq.l 1 CO 2C0 +CO 30
Ceq,l =2G,
C._,= Ceq‘lco - (ZCO)(ZCO) _Ic
- C‘eq‘l + Co ZC[) + ZC{J 0

Coy =Co+Co+Cy

=[3c,
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Picture the Problem We can treat the configuration in (a) as two capacitors in parallel
and the configuration in (&) as two capacitors in series. Finding the equivalent
capacitance of each configuration and examining their ratio will allow us to decide
whether (a) or (b) has the greater capacitance. In both cases, we’ll let C) be the
capacitance of the dielectric-filled capacitor and C; be the capacitance of the air
capacitor.

In configuration (a) we have: C,=C+¢C,



Express C; and Cy:

Substitute for C; and C;> and
simplify to obtain:

In configuration (b) we have:

Express C; and Cy:

Substitute for C; and €, and
simplify to obtain:

Divide Cp by Cy:

Because <1 for x> 1:

(x+ 1)y

G
d, d 2d
and
Cq:EDAE_EC'%A_EUA
- d, d 2d
C,H_KEOA EOA_EO 4(1{%—1)
2d 2d
1 1 1 c,C
—=—t+— =, =—12
¢, ¢ G ¢, +C,

SR

]
o
=

and

G,
> 4, ld d

[260 A (cheo A]
d J d
2¢g, A+2K'EO A

d d

[260 A](Zx‘eo A]
e d

2¢, A(!{+1)

_ZEOA[ K J
d \k+l

2eg, A[ K ]
Gy d \x+1) 4k
C

- - P
:heoﬁzzkeoﬂ 2Kk ey A

C, =

. S A (K-i—l) - (K‘-I—l)2
2d

C,>C,




