

Reconstruction of All-Particle Energy Spectrum for ICETOP

Samvel Ter-Antonyan and Ali Fazely

CORSIKA simulated EAS database for 80 tanks configuration

Simulated: $0.1 < E_0 < 500 \text{ PeV}$ $\theta < 40^0$ *p*, *He*, *O*, *Fe* $R_{\text{nearest1}} < 120 \text{m}$

Reconstructed: S_{min}=20pe At least 3 stations within R<150m

Shower core coordinate distributions

Multi-parametric energy estimator for ICETOP Array

Energy estimator:
$$E_1 = a_1 + \frac{a_2}{\cos\theta} + S_{125} \left(a_3 + \frac{a_4 \cos\theta}{\beta} + (a_5 \beta)^{a_6} \right)$$

 $\min\{\chi^{2}(a_{1},a_{2},\ldots,a_{6},\sigma(E_{i})|E_{0,i})\}$

$$\chi^{2} = \sum_{A} \sum_{i} \frac{(\ln E_{0,A,i} - \ln E_{1,i})^{2}}{\sigma^{2}(E_{0})}$$

 $\chi^2/n_{df} = 1.05$ i=1,...2000 $A\equiv H, He, O, Fe$ $E_0 > 1 PeV$ $\sigma = 0.35 - 0.055 Ln(E/PeV) \pm 0.07$

a1	11.21	±	0.05
a2	2.336	±	0.042
a3	0.558	±	0.015
a4	1.200	±	0.034
a5	0.241	±	0.004
a6	7.29	±	0.52

 E_0 - E_1 scatter plots

Inverse problem

Energy estimator: $E_0 \approx E_1$

$$\begin{cases} (N_{e+\gamma}, N_{\mu}, s, \cos\theta) \\ (N_{e}, N_{\mu}, \theta)? \\ \rightarrow \{E_{0}, S_{125}, \theta\}^{-1} \\ (S_{125}, \beta, \cos\theta) \end{cases}$$

[GAMMA_09] [KASCADE-GRANDE] [ICETOP_09] This work

$$f(E_1) = \int F(E_0) W(E_0, E_1, A) dE_0$$

is ill-posed problem for $F(E_0)$ due to $A \equiv H$, He, ... Fe

Redefinition of inverse problem:

$$\succ$$
 a priori: $F(E_0) \sim E_0^{-\gamma}$,

Let $W(E_1, E_0, A) \cong N(\delta, \sigma | Ln(E_1))$

$$f(E) \cong F(E) \cdot \delta^{\gamma - 1} \cdot \exp\left(\frac{\sigma^2(\gamma - 1)^2}{2}\right)$$

Solution:

Distribution of energy errors (~ Gaussian)

Energy bias versus shower zenith angle

Inverse problem for ICETOP: $f(E_1) = \int F(E_0)P(E_0)W(E_0,E_1)dE_0$ $\gg F(E_0) \sim E_0^{-\gamma \pm \Delta \gamma}$ for $\gamma = 2.9$ and $\Delta \gamma = 0.25$ $\gg \delta = \langle E_1/E_0 \rangle \cong 1 \pm \Delta \delta(E_0)$, $\sigma(E_0) \cong a \cdot Ln(E_0) + b \pm \Delta \sigma$ $\gg P(E_0) = 1 - \alpha \cdot \exp(-E_0/E_{th})$, uncertainties: $\pm \Delta \alpha$, $\pm \Delta E_{th}$

Fit of solution: $f(E) \cong F(E) \cdot P(E'') \cdot \exp\left(\frac{\sigma^2(E') \cdot (\gamma - 1)^2}{2}\right)$

where E' = E/3.35 and $E'' = E \cdot \exp[(-b^2 + 0.88a) \cdot (\gamma - 1)]$

Total systematic spectral errors:

$$\left(\frac{\Delta \widetilde{F}}{\widetilde{F}}\right)^{2} \cong \Delta \delta^{2} (\gamma - 1)^{2} + \left[\sigma^{2} (\gamma - 1)^{2} \left(\frac{\Delta \sigma}{\sigma} + \frac{\Delta \gamma}{\gamma - 1}\right)\right]^{2} + \left(\frac{\Delta E_{th}}{E_{th}}\right)^{2} \left(e^{E/E_{th}} - 1\right)^{-2}$$

ICETOP: *a*=-0.055; *b*=0.35; $\Delta \sigma$ =0.07; α =1.35; $\Delta \alpha$ =0.1; *E*_{th}=0.6; ΔE_{th} =0.15

Accuracy of fit of solution ($\leq 2\%$)

0.02<*a*<0.09; 0.2<*b*<0.5; 0.45<*E*_{th}<0.75 PeV; 0.5<*E*₀<700 PeV

Efficiency

Expected biases and uncertainties of primary energy

if

then

All-particle energy spectrum reconstruction

CONCLUSION

The results are based on 4x5000 simulated shower events for ICETOP 80 tanks configuration and primary nuclei $A \equiv p$, He, O and Fe respectively.

The fluctuation of tank signal and shower reconstruction uncertainties were taken into account.

> 6-parametric primary energy estimator provides 10-15% accuracy for $E \cong 1$ PeV and 5-10% for E > 10 PeV regardless of primary nuclei kind.

➤ On the basis of inverse problem approach the reconstruction method for the all-particle primary energy spectrum was developed for ICETOP array.

➤ The reconstruction method was tested using 4-component rigidity dependent primary energy spectra.

The corresponding all-particle energy spectrum for ICETOP array was derived taking into account the energy threshold and energy reconstruction biases and uncertainties in the energy range 0.5-500 PeV.