PHYSICS 244 NOTES

Lecture 9 

Comparing with experiment
Introduction
In classical mechanics, with the motion of a particle described by its trajectory function r(t), comparing theory and experiment is pretty straightforward.  We set our watch and our coordinate system.  At time t we look for the particle at the point r(t).   

In quantum mechanics, it is not quite so simple.  We have ψ(x,t), but this is not a very direct description.  We have to perform some operations on ψ, and then do repeated experiments.  The one example of this that we have already discussed is a position measurement.  We first take |ψ(x,t)|2 , and then do the experimental preparation, wait for a time t, measure the position, and repeat many times.  After many repetitions, we build up a histogram for x, and compare it to |ψ(x,t)|2  .  There are similar prescriptions for other quantities besides the histogram of x, and these are the subject of this lecture. 

Expectation values

The reason for the repetition is that quantum mechanics does not make definite predictions for the position, momentum, etc.  When we do the exact same measurement on identically prepared systems, we do not get always get the same result, as we do in classical mechanics.

But probability distributions can be built up by repeated measurements, and ψ does tell us what these should be.  That is the histogram approach.  However, very often we are not interested in the whole distribution, but only some of its simpler characteristics, such as the average.  

Position

We have already considered one example of this.  <x>, the average value of the position, can be obtained by 

<x> = ∫ |Ψ(x,t)|2 x dx

For a particle in the ground state of the infinite square well, we have

<x> = 

        ∫ (2/L)1/2 sin(nπx/L) exp(iωt) (2/L)1/2 sin(nπx/L) exp(-iωt) x dx

       = (2/L) ∫0L sin2(nπx/L) x dx
       = (2/L) (L/nπ)2 ∫0nπ  sin2 u u du

       = (2L/n2π2) (n2π2/4) = L/2 
This makes sense – it says that the particle is, on average, at the middle of the well.

Kinetic and potential energy 

The Schrödinger equation for a stationary state is

Eψ(x) = - (ħ2/2m) d2 ψ(x) / dx2 + V ψ(x).

Multipliying this by ψ* and integrating, we have

E∫ |ψ(x)|2 dx = - (ħ2/2m)∫ ψ*(x)(d2 ψ(x) / dx2)dx + ∫ V(x) |ψ(x)|2 dx,
and since ∫ |ψ(x)|2 dx  = 1, we find

E  =  - (ħ2/2m) ∫ ψ*(x) (d2 ψ(x) / dx2) dx + ∫ V(x) |ψ(x)|2 

    = <KE> + <PE>.

So the average value of the kinetic energy is 

<KE> = - (ħ2/2m) ∫ ψ*(x) (d2 ψ(x) / dx2) dx and

the average value of the potential energy is

<PE> = ∫ V(x) |ψ(x)|2 dx.

Momentum

Using the formula for the average kinetic energy:
KE = - ( ħ2/2m)  ∫ ψ* d2ψ/dx2 dx = p2 / 2m

and roughly taking the square root, we “derive” the formula

<p> = - i ħ ∫ ψ* (dψ/dx) dx
for the average momentum of a stationary state. 

Expectation values in the infinite square well

We already did the position.  Here is the averagemomentum in the state ψn:
<p>   = -i ħ ∫ (2/L)1/2 sin(nπx/L) exp(iωt) 

                             × (2/L)1/2 (d/dx) sin(nπx/L) exp(-iωt) dx

        = -i ħ (2/L) ∫ sin(nπx/L)exp(iωt) (d/dx)sin(nπx/L) exp(-iωt) dx

        = -i ħ  (2/L) ∫ sin(nπx/L) cos(nπx/L) dx

        = -i ħ  (2/L) (L/nπ) ∫0nπ sin u cos u du

        = -i ħ (2/nπ) ∫0nπ sin 2u  du /2

        =  -i ħ (2/nπ) (1/4) [cos 2nπ-cos 0]

        = 0 .

This is consistent with our characterization of these states as consisting of an equal mixture of + and – momenta.  Just because the average momentum vanishes does not mean that the average squared momentum need vanish:

<p2>  = - ħ2 ∫ (2/L)1/2 sin(nπx/L) exp(iωt) 

                           × (2/L)1/2 (d2/dx2) sin(nπx/L) exp(-iωt) dx

          = -  ħ2  (2/L) ∫ sin(nπx/L)  (d2/dx2) sin(nπx/L) dx

         =  ħ2  (2/L) (nπ/L)2  ∫0L sin2(nπx/L) dx

         = ħ2  (2/L) (nπ/L)2 (L/2)

         = (ħ n π / L)2.
This may appear to be paradoxical at first: how can the average momentum be zero, but the average squared momentum be positive?  But remember, the momentum distribution shows an equal probability of having positive and negative momentum, but the squares of these are always positive! 

The expectation value of the kinetic energy in the state ψn is

<KE> = <p2 > / 2m = (ħ2 n2 π2 / 2m L2)
The big difference between the calculations for x and p is that when we calculate p we need to change the wavefunction by taking the derivative.  For this reason, pop = - i ħ d/dx is called the momentum operator – it operates on the wavefunction ψ to produce a different function –i ħ dψ/dx.

Actually, however, x also operates on the wavefunction to produce a new function xψ.
x is a multiplication operator, while p is a differential operator.
H = -ħ2 / 2m d2/dx2  + V is a mixed operator.  It is called the Hamiltonian or the energy operator.
