PHYSICS 244 NOTES

Lecture 8 

The discrete motions of an electron:

Stationary states , part 2
Example 3.  Finite square well
This particle is also in a box, but now the walls are not at infinite height, but rather at V0.  So it looks like there might be some chance that the particle could escape.  Indeed, classically the particle would escape from the box if its total energy exceeded V0.
V(x) = V0 if x < 0

V(x) = 0   if 0 < x < L

V(x) = V0 if x > L.

Now let us look at the wavefunctions for this problem qualitatively.

Unbound state

By “unbound”, we mean that the particle can escape off to infinite distance, so the wavefunction does not go to zero as x→∞ or 

x→-∞.  This happens when the total energy  E = KE + PE > V0 , as the kinetic energy is then positive at x = ∞ and x = -∞.  

An important mathematical point to remember is that we can solve a differential equation separately in the different regions of space that it holds, so look at the form of ψ separately in the regions |x|<L and |x| > L.
The stationary solutions in each region take the form

ψ(x) = C exp(ikx)

Substituting this, we find that the Schrödinger equation outside the well is

E C exp (ikoutx) = -ħ2 /2m (d2/dx2) C exp(ikoutx) + V0 C exp(ikoutx),
and simplifying, we find

kout = +- (2m (E-V0) /  ħ2 )1/2, 

while the Schrödinger equation inside the well is

E C exp (ikinx) = -ħ2 /2m (d2/dx2) C exp(ikinx) ,

and simplifying, we find

kin = +- (2m E /  ħ2 )1/2.
To summarize:

ψ(x)= exp(ikinx) for 0 < x < L, and
ψ(x)= exp(ikoutx) for x < 0 and x > L.

This describes a particle moving to the right.  We can reverse the sign of kin and kout to get a particle moving to the left.  Alternatively, we can make a linear combination of two oppositely moving traveling wakes and get a standing wave.
If we look at the real part of ψ, we find that it oscillates faster inside the well.  This is because the faster oscillations are associated with a higher kinetic energy, and so this reflects the conservation of energy for this stationary state, which after all has a fixed energy.
This electron is not bound: it can escape out into the space outside the box.  This is what we would expect based on classical reasoning.

For unbound states, the energies are not discrete, just as in the classical traveling wave.

Bound state

If 0 < E < V0, then we have much the same solution, but with one important difference: the wavevector equation when the particle is outside the box involves the square root of a negative number.
kout = +- (2m (E-V0) /  ħ2 )1/2
       = +- i | 2m (E-V0) /  ħ2 | 1/2
We must choose +i on the right (x<0) and –i (x>0) on the left, to make sure that the solutions are decaying exponentials.  
So

ψ(x)= C sin (kinx) for 0<x<L

ψ(x)= exp(-|kout| x) for x>L

ψ(x)= exp(|kout| x) for x<0.

The conclusion is the same as in classical mechanics, except for one extremely weird point:  the particle has a finite probability of being in the “classically forbidden” regions x<0 and x>L.  Classically, the kinetic energy would be negative in this region, which is impossible, since KE = mv2/2 is always positive.  This phenomenon is at the basis of quantum tunneling, which will be very important later on.

Notice that in the classically forbidden region, the behavior of the wavefunction changes character: instead of oscillating in such a way that the wavefunction is always curving back to the origin (d2ψ/dx2 <0), as it does in the well itself, it curves away from the axis(d2ψ/dx2 >0) .

