PHYSICS 244 NOTES

Lecture 7 
The discrete motions of an electron:

Stationary-state solutions of the SWE, part 1
Review of complex trig

z = x + iy  

z* = x - iy 

|z|2 = z z* = (x + iy)  (x – iy) = x2 + y2
z = Re z + i Im z

z* = Re z - i Im z

x = Re z, and y = Im z are all real.

cos θ = 1 – θ2/2! + θ4/4! - …

sin θ = θ – θ3/3! + …

eiθ = 1 + iθ + (iθ)2/2! + (iθ)3/3! + (iθ)4/4! + …

     = 1 - θ2/2! + θ4/4! + …

           + i (θ  - θ3/3! + …)

     = cos θ + i sin θ  

e-iθ = (eiθ)* = cos θ – i sin θ
|eiθ|2 = 1.
Thus e-iωt = cos ωt - i sin ωt.
The exponential forms are quite useful because the derivatives are always very simple:

∂/∂t e-iωt =  - i ω e-iωt ,  ∂/∂x eikx =   i k eikx ,  ∂2/∂x2 eikx =   (i k)2 eikx = - k2 eikx
Stationary states

Following our analogy with the vibrating string a little further, we search for solutions of a particle that is that are associated with a single frequency (and energy, since E = ħω).  In the string case, these are called modes of vibration (in physics), or pure tones (in music).  In QM, they are called stationary states.  In both cases, we can always add them at the end to get an arbitrary motion, because of the superposition principle.

The Schrödinger equation simplifies greatly if there is only one energy, because we can write:

Ψ(x,t) = exp(-iωt) ψ(x).  Big Ψ depends on x and t, while little ψ only depends on x.

Then we find

iħ ∂Ψ/ ∂t = iħ (-iω) exp(-iωt) ψ(x)

              = ħω exp(-iωt) ψ(x)

               = E Ψ
So we can write the SWE for stationary states as

Eψ(x) = - (ħ2/2m) d2 ψ(x) / dx2 + V ψ(x).
This involves only one variable, x, rather than two, x and t.
We now do three examples of stationary states: traveling waves, infinite square well, and finite square well.

Example 1: Traveling wave

The simplest kind of traveling wave occurs when V = 0, which means that no forces act on the particle.
Eψ(x) = - (ħ2/2m) d2 ψ(x) / dx2
A simple solution is ψ = exp(ikx) and then we get 

E = ħ2k2 / 2m = p2 / 2m.
Note that |ψ|2 = 1, so the particle is equally likely to be anywhere.  This means that Δx = ∞, so we also have Δp = 0.  In fact, p has a perfectly definite value in this wavefunction: p = ħ k.

This is not quite a legitimate wavefunction, since we cannot normalize it!  We would have to add some walls or something else far way to confine the particle.  Then we could normalize the wavefunction.   
Ex. 2:  Infinite square well, or “particle in a box”
In this example, we will finally see the appearance of discrete energies, which, since E= ħ ω, also means discrete frequencies.  This will complete the analogy between the quantum particle confined to a finite spatial region, and the guitar string.

The analog of the string fixed at the ends is the infinite square well, also known as the particle  in a box.
In terms of V, we have the diagram
[DIAGRAM]
V(x) = ∞, if x < 0

V(x) = ∞, if x > L

V(x) = 0, if 0 < x < L.

When V(x) = ∞, we must have ψ = 0.  So we only need to solve for

Ψ(x) when 0 < x < L, but the function must be continuous at x = 0 and x = L, so the boundary conditions are

ψ(x=0) = 0

and 

ψ(x=L)=0.  

We already know a solution to this equation and boundary conditions:
ψ(x) = C sin kx.  Substitution into the Schrödinger equation gives

E = ħ2k2 / 2m

and to satisfy the boundary conditions we need 

k = nπ/L.

These solutions are just the same as for the waves on a string!

Now we find the quantized energies

En = ħω = ( ħ2π2 / 2mL2 ) n2.

This is slightly different from the allowed frequencies of the string, which are in the ratio 1:2, 1:3, etc.

Here they go like 1:4, 1:9, 1:16, etc.  That come from the fact that ω is proportional to k2, rather than ω proportional to k, as in the classical wave equation.
What about k in this solution?  Can we again identify ħk as the momentum ?

Almost, but not quite.  Remember that the pure state with precisely well-defined momentum is 

ψ  = eikx.

Now in the infinite square well case we have 

ψ = sin kx = [exp(ikx) – exp (-ikx)]/2i, so the wavefunction is a linear combination of traveling waves with momentum ħk and 
– ħk.  This is actually very similar to the string again – a standing wave is a sum of traveling waves, put together so that the net movement to the right or left is zero.

This wave is localized, and therefore it is normalizable.

1 =  ∫0L dx |ψ|2 = C2  ∫0L dx sin2 kx = C2 (1/2) ∫0L dx [1-cos 2kx]

   =  C2 (1/2) (1/2k) ∫02kL dx [1-cos θ]

   = C2 (1/2) (1/2k) [ (2kL) – sin 2kL + sin 0 ]

but sin 2kL = sin 2nπ = 0,

so

1 = C2 (L/2) and 

finally C = (2/L)1/2.

The wavefunctions, written out in complete detail, are

Ψn(x,t) = (2/L)1/2 exp(-iωnt) sin nπx/L.

Here ωn = ħπ2n2 / 2mL2.

If the initial condition is  

Ψ(x,0) = (2/L)1/2 sin πx/L,

then the wavefunction is 

Ψ1(x,t) = (2/L)1/2 exp(-iω1t) sin πx/L

for all times.  A completely general solution can be written as
Ψ(x,t) = (2/L)1/2 Σn an exp(-iωnt) sin nπx/L.

The values of the an would be determined by precisely what the initial conditions were.  If it was Ψ(x,0), then they are just the Fourier coefficients of a sine transform of Ψ(x,0).

Note that for ψ1, the particle is most likely to be at L/2, while for ψ2, it can’t be at L/2, since ψ2(x=L/2) = 0.  But it can be on either side.  This is called a node of the wavefunction.
