Note: All [DIAGRAMS] will be provided in the lecture
PHYSICS 244 NOTES

Lecture 5

The meaning of the wavefunction

Electron waves

We have seen that particles in classical mechanics are described by their trajectories, which mathematically are functions r(t).  This represents a moving point.  In quantum theory, this is no longer the case.  We have already seen that particles must be described as waves, which are not point-like.  This prompted Schrodinger to introduce the wavefunction ψ(r,t).  In the previous lecture, we said that particles are now to be described by this function.  But we must make precise what we mean here, and the next two lectures will do that

One way to think about ψ(r,t) is that it is like a density, something like the way we would describe a sound wave with a density ρ(r,t).  In a sound wave ρ is big where the density is high and small where the density is low.  This is a good starting point for thinking about ψ(r,t).  It turns out, however, that the electron wave is even more complicated.  It is complex:  ψ = a + ib, a and b are real numbers and where i is the square root of -1.  The j of electrical engineering satisfies the equation j = -i.  

So ψ(r,t) is not quite a density, which has to be a single real positive number at every point r and every time t.  It is not ψ itself that is a density, but rather |ψ|2(r,t) = a2(r,t) + b2(r,t), which is a real positive number.  And it is not quite density either, but rather a probability density.  If ψ(r,t) = 0 at some point, then the electron is definitely not there.  If |ψ|2(r,t) is relatively big, then the electron is likely to be there.  For example, if we look at an H-atom (or any other atom) with the nucleus at the origin r = 0, |ψ|2(r,t) > 0 if |r| < 10-10 m, but |ψ|2(r,t) = 0 (or at least it is extremely small), if |r| >> 10-10  m.  

But what exactly does this mean?  How can we describe an actually existing single object as a probability?  This is very different from other uses of probability, say the distribution of molecules in a gas.  There, one just admits there is incomplete knowledge of the motions of the individual particles, and settles for an average description.  If we knew more, we would write the actual trajectories for all the particles and there would not be any need to introduce the idea of probability.  Now we are saying that this probabilistic notion is all that we can have.  

How can this be?  It works like this.  We prepare two electrons in exactly the same way, giving each the same wavefunction.  Then we do the exact same measurement of the position of the two particles.  We get different results. This is a fact of nature.  So what possible use is the wavefunction?  How can we measure it? The answer is that we repeat the measurement a large number of times, and make a histogram of the results – then the graph comes out shaped like |ψ|2(r,t).

This is completely different from classical mechanics.   There, if we start with 100 particles with the same initial conditions, we always find the same final conditions.  

Histograms

Since histograms are going to play a big role here, I review how to use them.  We have a bunch of data points.  Say we measure the position of a particle N=100 times in the lab.  Sometimes it is in the range from 4 to 5, sometimes from 6 to 7, etc.  Each time it is in a range, or bin, we add a square to that bin i.  Let the number of squares in bin be Ni and the value of x in bin i be xi.

[DIAGRAM]

To calculate the average value of x, w use

< x > = (1/N) Σj Nj xj
and in fact any function of x can be averaged:

< f(x)> = (1/N) Σi Ni f(xi)

The width of the distribution is usually defined as

σ = [ (x - < x>)2 ]1/2
Now of course in any such experiment the more data points the better.  If we work on the precision of our instruments, we can locate x more accurately and we can make the bins narrower.  This is also good.  We can even think about the limit where we have an infinite number of measurements and the width of the bins goes to 0.   Then the sums above become integrals.  This leads us to think about continuous probability distributions, P(x), which is the continuous function that the histogram goes over to.  It is convenient to define P(x) to be normalized:  

∫ P(x) dx  = 1.

The range of integration is whatever possible values x can take in the experiment.  The average value of x is

< x > = ∫ P(x) x dx.

Other averages are calculated as above, i.e., using 

 < f(x)> = ∫ P(x) f(x) dx.

Quantum Averages

For the calculation of average values for the position of a particle described by a wavefunction, we have no real new concepts. |ψ|2(r,t) is a probability distribution, so 

< x(t) > = ∫ dx |ψ|2(r,t) x  

< x2(t) > = ∫ dx |ψ|2(r,t) x2

etc.

This function is the one that replaces the r(t) of classical mechanics.  Note that, in accord with the Uncertainty Principle, the position is not precisely defined.  It has some spread.  Indeed, we can now make a much more quantitative definition of the uncertainty Δx.  It is defined as the standard deviation: 

 Δx = [ < x2(t) > - < x(t) >2 ] ½ 

= { ∫ dx |ψ|2(r,t) x2 – [ ∫ dx |ψ|2(r,t) x ]2 }1/2.

Once we know ψ, then we can find the average position and also the spread in positions.  In practice, this does not tell us anything precise about any individual experiment.  It tells us what the histogram of x will look like after we do many identical experiments.  It provides only a statistical description of human experience.

