PHYSICS 244 NOTES

Lecture 28
Electron States in Metals
Introduction
We are now going to talk about how electrons move around in metals.  This time, we will the quantum point of view.  The first question to ask when you are going to write the wave equation is: what is the potential?  We already thought about this a bit, and decided that the potential looks a lot like a finite square well, with the sides of the well being the surface of the metal, and the height of the potential step being the work function.  The work function is big enough that these sides can be thought of as infinitely high for most purposes.  This allows us to use the simpler formulas for the infinite square well.
Recall from our earlier discussion that, at zero temperature, N the electrons will fill up the orbital states in order, starting with the one of lowest energy. Two electrons go into each because of the two spin directions.  So the process finishes with the orbital state wih the N/2-th highest energy.  The energy of this state is called the Fermi energy EF, and its wavevector is called kF.  EF =  ħ2kF2/2m.  States with energy greater than that are empty.  If T>0, then the probability of a given state of energy E being occupied is 

f(E) = [exp(E-μ)/kT]-1, the Fermi function.

I will deviate from the book somewhat in this section.  We will look at motion of electrons in one, two, and three dimensions, since all are important in modern electronic devices.

One dimension
In 1D, the states are

Ψ (x) = (2/L)1/2 sin (nπx/L) and En = ħ2 π2 n2 / 2m L2
and the electrons are free to move through the whole system of length L.

The index n = 1,2,3…

These wavefunctions were determined using the Schroedinger equation and the requirement that

Ψ(x=0) = Ψ(x=L) =0.

It is much more convenient to change to periodic boundary conditions

Ψ(x=0) = Ψ(x=L) and use eigenfunctions

Ψ(x) = (1/L)1/2 exp(ikx), with k=2πn/L, and n = …-2,-1,0,1,2…
Periodic boundary conditions turn out to be mathematically equivalent to the more accurate hard-wall boundary conditions except for problems where physics processes happening at the surface are important.  Usually these are swamped by “bulk” contributions.
I will now introduce a trick to compute quantities at zero temperature.  There are many levels, but also many electrons, maybe 1025 or so.  Let’s imagine we have one-dimensional Na: one electron per atom, so we have
k = 2nπ/L, so 

N = 2 × Σ-n 1, where the sum runs from n = nmin up to n= nmax and the factor of two is for the two spin directions.  A little thought tells you that nmin = - nmax and so

N =  4 nmax , since there are 2 nmax terms in the sum.  This emans that

kF = 2π nmax / L = π N / 2 L and EF = ħ2   (π N / 2 L)2 / 2m.
= (ħ2 π2 / 8m) (N/L)2 = (ħ2 π2 ne2/ 8m),

where ne = N/L is the linear density of electrons, or, equivalently, the inverse separation between adjacent atoms.  For example, for N/L = 10-10m-1, we find EF  of around 1 eV.
The Fermi velocity is vF = (2EF/m)1/2 = 
(2 × 1 eV / 9.1 × 10-31 kg)1/2 = (2 × 1.6 × 10-19  / 9.1 × 10-31)1/2 m/s
                                              = 0.59 × 106 m/s.  FAST !
All quantities that express a total property of the system are computed in this way as a sum over states.   It is usually more convenient, and clearer, to do the sums over k instead of n.  Then we would have for example

N = 2 × (L/2π)D∫dDk ,
where the integral runs over all filled k-values: all values such that k < kF.  D  is the dimension of space.  So the total energy, still in one dimension, is
E = 2 × (L/2π)∫dk E(k)  = (L/π)∫-kF kF  ħ2 k2 /2m 

= ( ħ2 L kF3/3πm), and the energy per particle is
E/N = ħ2 kF3 /3πnem = (π ne / 2)3 (ħ2 /3πnem) = ħ2 π2 ne2/24m.
Two and Three Dimensions
In two dimensions we find

N = 2 × (L/2π)2 ∫d2k = (L2 / 2 π2 ) πkF2, so

kF = ( 2 π ne )1/2,
where ne = N/L2 is the number of electrons per unit area.
Etot = 2 × (L/2π)2 ∫d2k (ħ2k2/2m)

= (L2 ħ2/ 4π2m) 2π ∫0kF k3 = L2 ħ2 kF4 / 2πm
so the energy per particle is

E/N = ħ2 kF4 / 2πmne= ħ2 ( 2 π ne )2 / 2πmne =  2 π ħ2 ne  / m.

In three dimensions we find

N = 2 × (L/2π)3 ∫d3k = (L3 / 4 π3 ) 4πkF3/3 , so

kF = ( 3 π2 ne )1/3,

where ne = N/L3 is the number of electrons per unit volume.
Etot = 2 × (L/2π)3 ∫d3k (ħ2k2/2m)

= (L3 ħ2/ 8π3m) 4π ∫0kF k4 = L3 ħ2 kF5 / 10 π2mη
so the energy per particle is

E/N = ħ2 kF5 / 10 π2 m ne =  ħ2 ( 3 π2 ne )5/3 / 10 π2 m ne .
