Note: All [DIAGRAMS] will be provided in the lecture
PHYSICS 244 NOTES

Lecture 27

ELECTRICAL CONDUCTION
Introduction

We now turn to the conduction of electrical current, which will underlie everything we are going to say about devices.  This physical process is of course at the heart of all electrical engineering.

For many purposes, (for example almost all of power engineering) a simplified picture of conduction that only uses classical concepts is pretty much OK.  This was invented mainly by German physicists at the end of the 19th century and it worked well enough for the electrical industry to get started at that time.  People were only dealing with DC or low frequency AC currents at the very beginning, and that is what this lecture deals with. Communication using radio frequencies started soon after, at the end of the 19th and the beginning of the 20th centuries, using the theory of Maxwell, (which we don’t deal with in this course), the experiments of Hertz and Helmholtz, and finally the practical devices of Marconi.  For all of these technologies, quantum mechanics is not really needed.  Only in 1948 with the invention of the transistor did all that change, and change completely.  Now quantum mechanics is the starting point for the understanding of nearly all electronics. 

Nevertheless, the old-fashioned classical picture can form a basis for the full picture, and that is why we start with it.

Classical picture 

Consider a cylindrical piece of metal of length L and cross-sectional area A.

We want to understand the resistance of the material, defined by a measurement of V and I at the ends.  Then R = V/I.  Experimentally, it is found by looking at wires with different shapes made from the same material that R = ρ L /A, where ρ is the resistivity of the material.  ρ is a property of the material, whereas R is a property of the material AND its dimensions.  Our interest here is to connect ρ with the atomic-level constituents of the material.

We apply a voltage to the conductor, and this starts up a current.  This seems straightforward, but there is something funny right away.  The electric field caused by the voltage creates a force on each electron given by F = qE = -eE.  The electrons should respond by an acceleration a = F/m = -eE/m.  But the current of the electron is proportional to its velocity v, not its acceleration.  This seems to imply that the current for a DC voltage would increase linearly in time, since at constant acceleration, the velocity increases linearly in time.  What is going on?

Actually, the situation is a familiar one.  If you drag a heavy object across the floor, you find that the velocity is proportional to the applied force, not the acceleration.  What happens is that you initially accelerate the object.  As it speeds up, the frictional force, which is proportional to the speed, increases until it balances the applied force.  The result is motion at constant speed.   If you think of the electrons as a fluid, a more helpful analogy might be the relation between a force and the water flowing in a pipe, where the force that pushes the water is balanced by the frictional force resisting the motion.  Again the point is that the speed, not the acceleration, is proportional to the force.  

The same thing happens to the electrons.  They initially speed up, but then they run into obstacles such as lattice imperfections, impurities, and sound waves.  The time between such collisions is called the mean free time, or the relaxation time, and it is denoted by τ.  Each time a collision happens the motion of the electrons is randomized.

[[DIAGRAM]]

Now we know that the instantaneous motion of the electrons is quite fast – it is the Fermi velocity vF, which in metals is about 10-6 m/s, as we have seen.  But this motion, when averaged over times longer than τ, is almost completely random in direction.  There is only a small left-over part called the drift velocity vd that is not random – it is along the direction of the field (actually opposite to the field, since the charge on the electron is negative).  This leftover part vd comes from the small increment of velocity between collisions. 

Resistivity formula

Now we want the connection between ρ and the microscopic structure of the material.  First we need the relation between the current and vd.  

I = V / R = A V / ρ L, but V = EL, so

I = A E / ρ, and j = I / A = ne vd,

That is the first important equation : j = ne vd
n is the volume density of electrons, while j is the current per unit area.  

Relating this to E yields j = E / ρ and n e vd = E / ρ.  

So what we need to do is to find the connection between E and vd.

The electron moves with the very fast vF between collisions.  The acceleration in the time between collisions is what accounts for the drift velocity, so

vd = a τ = (eE/m) τ 

We can now get ρ.

ρ = (E / n e vd) = (E / n e ) (m/eEτ) = m / ne2τ.

This is the basic result of this section.  Taking each of the factors in turn, we have that the resistivity is higher when the mass is big – the particles are hared to move; the resistance is bigger if the charge is small – one factor of the charge comes from the force, and one because the contribution of each electron to the current is proportional to its charge; the resistivity is bigger if τ is small because it is only during the time τ that the electron picks up its drift velocity. 

The distance between collisions is called the mean free path λ.  Thus the relaxation time τ = λ / vF.

The main thing we have control over in trying to get high-conductivity wire is τ, the relaxation time.  We want τ to be as big as possible.  τ comes from bumping into imperfections in the lattice or from bumping into moving atoms (sound waves).  The former effect explains why pure metals are better than disordered alloys for conduction (why we prefer pure Cu for wires), why working a metal (which introduced disruptions in the crystal lattice) raises its resistance,  and the last effect explains why the resistance of a metal goes up with temperature (positive temperature coefficient).  

τ, and therefore λ, depends on all these things, but in typical cases such as Cu at room temperature, λ might be about 500 angstroms, which is 5 × 10-8 m or so.

Putting in the numbers in the formula ρ = m/ne2τ, we find ρ = 10-7 Ω-m, which is about right for Cu at 300 K.  

The drift velocity depends on the electric field.  For Cu at 300K in a field of 1 V/m, we have vd, we use n e vd = E / ρ, or

vd = E / ρ n e = 1 / (1.7 × 10-8 × 8.5 × 1028 × 1.6 × 10-19) =  4.3 × 10-3 m/s, whichis way smaller than vF, the instantaneous velocity, which is normally about 106m/s.

