Note: All [DIAGRAMS] will be provided in the lecture

PHYSICS 244 NOTES

Lecture 2 

Traveling waves, particles and de Broglie
Traveling waves 

Another perfectly good solution of the wave equation is 

y(x,t) = y0 sin (kx-ωt)

Then 

∂2y/∂t2 = - ω2 y0 sin(kx-ωt) 

∂2y/∂x2 = - k2 y0 sin(kx-ωt)

and substituting in the wave equation gives 

- ω2 y0 sin(kx-ωt)  = -  v2 k2 y0 sin(kx-ωt)

so w=kv again.

This wave moves rigidly to the left with speed v.  It is no good for the string fixed at the ends, since it does not vanish at x= 0 or x=L.

But it is fine for an infinite string.  In fact any y = y0 f(kx-ωt) is also a solution of the wave equation.  Even localized functions like

y = y0 exp[-(x-vt)2 /L2 ] will work.

A series of waves like this is what produces Morse code.  L is big for a dash and small for a dot.

This is called a wavepacket, since it is localized. 

These do not satisfy the boundary condition, but as long as the wave doesn’t get the boundaries, if any, this is not a problem.

It is hard to make such a wave so that you can see it on a guitar string, but easy to do with a telephone cord.

Particles

We won’t say too much about particles, except to notice a few curious analogies between some kinds of particle motion and some kinds of wave motion.  You know that particles move according to F=ma, and that there are two types of motion: bound motion, which is a bit like the string fixed at the ends, and unbound motion, which is a bit like the wavepacket.  There are some deeper connections, too.  Bound motion also has a period, just as the standing wave does – its motion can be periodic.  The motion of a wave packet for small L could almost look like a particle – for example, a wavepacket can carry momentum.

DeBroglie relations (1924)

By the beginning of the 1920’s, it was known that atoms consist of electrons orbiting a tiny, positively-charged nucleus.   

For example, the H atom consists of a nucleus of mass mp = 1.67×10-27 kg and an electron weighing me = 9.1×10-31 kg.  The proton is far heavier: mp/me = 1800. 

There is the usual Coulomb force between the particles:

F = -k e2 / r2 between them.  

This is exactly the same equations as we have for planetary motion, another remarkable coincidence.  

So we would just apply F = ma or –k e 2 / r2 = mv2 / r.

The planets radii, etc., were understood to be the result of initial conditions – a different solar system would have the planets in very different orbits.

But by 1924, it was known that somehow, not all orbits were allowed.  All atoms are in only a few possible states, and the transitions between the states determined the frequencies of the light that came out.  Bohr “explained” this by postulating a quantization condition:

mvr = angular momentum = nh/2π = nħ, n=1,2,3...

ħ = h/2π  = 1.05 × 10-34 J-s =  1.05 × 10-34 kg – m2 / s

This suggested to deBroglie that electrons were like waves.  He could get this if he set (for no other reason) λ=h/p, where 

p = momentum =mv.

If the electron goes around in a circle, then the periodicity condition gives

λ = 2πr/n

[DIAGRAM]   

mv = p = h/λ = hn / 2πr

which is the same as mvr = nh / 2π

The proposal was that λ = h/mv for all objects, which connects a wave property with a particle property.

It is evident that no such quantization is visible for macroscopic objects.  The reason (or one of the reasons) is that the wavelength is just too small:

For a macroscopic object λ = 6.6 × 10 -34 J-s / ( 50 kg × 1m/s) = 1.3 × 10-35 m , which is too small to be measured in any known way.

In an atom, we have, in order of magnitude, mv2/2 = e2/r.  Putting this together with mvr = h, gives r = h2/2ke2m ~ 10-10 m = 1 Å For an electron with v = 10-2 c, on the other hand,

We have

λ =  6.6 × 10 -34 J-s / ( 9.1 × 10-31 kg × 3 × 108 m/s) = 2.4 × 10-10 m = 2.4 Å, which is the size of an atom!!  This is a good indication that we may be on to something with this de Broglie idea.
