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PHYSICS 244 NOTES

Lecture 18

Statistics of electron motion

Introduction

Last time we discussed how classical particles in a gas behave, but we gave a description of a kind you may not be used to.  We looked not at the motion of individual particles, but at certain average aspects of their behavior.  Indeed, if we have 1023 particles, there is no point in talking about the precise motion of all of them – the human brain couldn’t comprehend it, and the largest computer in the world couldn’t store that amount of information.  We continue along these lines today, but now talking about quantum particles.  In fact, in the next two lectures, we are attacking our goal of getting to the physics of electronic devices very directly. 

Electrons in a solid

In a conductor or doped semiconductor, some of the electrons escape from their parent atoms and roam freely through the material.  These electrons are responsible for carrying electrical current and for the existence of electrical engineering.  Today we want to talk about them for the first time in this course.

So let us imagine a very large number of electrons in a cube of copper, L on a side.  What are the forces on these electrons?  The atoms in the solid give a potential that is very much like a set of finite square well potentials, one for each atom.
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The conduction electrons we are talking about are in unbound states of these wells, while other electrons called core electrons, are in the bound states and do not conduct electricity.  (Insulators only have core electrons.) To a first and rather crude approximation (that is really valid only if their kinetic energy is very high, we think of the conduction electrons as moving in a constant potential V=V0.  As you are probably aware, it takes additional energy to move an electron from the inside to the outside of the cube through the face of the material.  This energy is due to the fact that the electron as it leaves would be leaving a block of stuff that has a net positive charge.  Its magnitude is called the work function W.  So the potential energy outside the material is V=V0+W.  Again, it is a pretty good approximation to think of W as being quite large, so the walls of the bo are infinitely high.  

We are left with a model of the solid as a bunch of electrons in an infinite square well in three dimensions.  The length of the well in all three directions is L.

Density of states

The Schrödinger equation is

Eψ = -(ћ2/2m) (∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂z2) + V0 ψ, 

but actually we can choose the zero of energy anywhere we want, so let us choose it at V0.  Then we have simply

Eψ = -(ћ2/2m) (∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂z2 , 

and the wavefunctions for the electrons are now easy to give:

ψk = (2/L)3/2 sin(kxx) sin(kyy) sin(kzz)

with k as the wavevector k = (kx,ky,kz).  k=|k| =  (kx2+ ky2 + kz2)1/2.

The energy is 

E(k) = ћ2kx2/2m + ћ2ky2/2m + ћ2kz2/2m = ћ2k2/2m.

We also know that

kx = πnx/L, ky = πny/L, kz = πnz/L,

with nx = 1,2,3…,  ny = 1,2,3…, nz = 1,2,3…

so 

E(k) = ћ2π2nx2/2mL2+ћ2 π2ny2/2mL2+ћ2 π2nz2/2mL2 = ћ2π2n2/2mL2.

We now define a very important quantity, the density of states ge(E).  It is defined to be such that 

ge(E) dE is the total number of states between E and dE.  

The total number of states in a radius n = |n| is

N(n) = 2 × (1/8) × 4πn3/3 = πn3/3 .

The 2 accounts properly for spin, and the 1/8 for the fact that we are computing only the 1/8 of the sphere that sits in the octant of three-dimensional Cartesian coordinate space where all three coordinates are positive.
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In terms of k this is 

N(k) = π (Lk/π)3/3 = [π (L/π)3/3] k3 = (1/3π2) V k3 , where V is the volume.  In terms of energy this is

N(E) = (1/3π2) V (2mE/ћ2)3/2.

The density of states is then

ge(E) dE = dN, so

ge(E) = dN/dE =  (1/2π2) V (2m/ћ2)3/2 E1/2.
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