PHYSICS 244 NOTES

Lecture 11
The harmonic oscillator 

Introduction

The most important problem in classical physics is the harmonic oscillator, the mass-on-a-spring.  This is because any motion of a bound system is harmonic if the oscillations are small enough.  The particle sits at the minimum of a potential, call it the point x=0.  Around a minimum, the potential can be written V = Kx2/2 if x is small enough.  Thus this situation comes up again and again.  It is even more important in quantum mechanics.  

Newton’s equation of motion is:

F = ma

F = - dV/dx = -Kx  = m d2x/dt2.  
The solution is x = x1 cos ωt + x2 sin ωt,

With ω = (K/m)1/2.

Note that this equation happens to be linear in x – very unusual for classical mechanics.  This is why the solution can contain an arbitrary amplitude x0. 
Schrödinger equation

By now we know the drill a little bit.  We are going to solve the Schrödinge equation.  So we need to know the potential.  Here it is V(x) = ½ Kx2.  The equation for stationary states is

E ψ(x) = (-ħ2/2m) d2 ψ(x) / dx2 + (1/2) K x2 ψ(x)

We won’t solve this in complete detail, as it involves the Hermite polynomials, a set of special functions not familiar to everyone.

But we can note a few things right away.  All states are bound, just as in the infinite square well.  That is because V(x) →∞ as |x| →∞, so it would take an infinite amount of energy to go completely away.

We can get some other information if we think back to the finite square well.  Consider a stationary state with energy E:
ψ(x) will oscillate when E > ½ Kx2, |x| < 2E/K 
and d2 ψ(x) / dx2 < 0.
ψ(x) will decay when E < ½ Kx2, |x| > 2E/K

and d2 ψ(x) / dx2 > 0.
This value of x is called the classical turning point, since this is where the classical particle would have to turn around.  The quantum particle slightly leaks out into the classically forbidden region.  

Also, we expect that the ground state ψ0 will have no nodes, the first excited state will have one, etc.

Ground state wavefunction

The ground state has the form

ψ0 = C0 exp(-λx2/2), and now we check that this works.
d2ψ/dx2 = C0 (d/dx) (-λx) exp(-λx2/2)

              = C0 (-λ) exp(-λx2/2) + C02 (λx)2  exp(-λx2/2) 

So E C0  exp(-λx2/2) = (-ħ2/2m) [ C0 (-λ) exp(-λx2/2) + C0 (λx)2  
exp(-λx2/2) ]  +1/2 K x2 C0 exp(-λx2/2)

and

E  = (-ħ2/2m) [ (-λ)  +  (λx)2  ]  +1/2 K x2 
The trick is to choose λ so as to cancel the last two terms:

(-ħ2/2m)λ2 = K/2

so λ = (mK/ħ2)1/2
and E0 = (ħ2/2m) λ = (ħ2/2m) (mK/ħ2)1/2 = ħ(K/m)1/2 /2 = ħω/2

So our guess works as long as we choose 

λ = (mK/ħ2)1/2 and E0 = ħω/2.
E0, by the way, is the famous zero-point energy.  No particle can have less than this amount of energy.  Is it the origin of dark energy?  

Normalization

1 = C02∫dx exp(-λx2) = C02 (π/λ)1/2, so

C0 = (λ/π)1/4 = (mK/π2ħ2)1/8
Excited states

The first excited state is

ψ1 = C1 x exp(-λx2/2),
and E1 = (3/2) ħω.

After that they get a little more complicated:

ψ2 = C2 (1-λx2/2) exp(-λx2/2),

E2 = (5/2) ħω
and the general one is 

ψn = Cn Hn(x) exp(-λx2/2),

E2 = (5/2) ħω
where Hn is an n-th order polynomial.

Energy level diagram

The pattern of energies should be clear:

En = (n+1/2) ħω.

The energy level diagram is particularly simple.  Is just consists of equally spaced lines.  The spectrum is correspondingly simple, and again just consists of equally spaced frequencies ω, 2ω, 3ω and so on.  

The selection rules are the same as in the square well.  The wavefunctions with n=0,2,4, .. are even functions: ψ(-x) = ψ(x) The wavefunctions with n=1,3,5, .. are odd functions: 

ψ(-x)= - ψ(x).  The transitions from even to odd or odd to even are much faster.  Even to even and odd to odd are forbidden, and hence are much slower. 

