PHYSICS 244 NOTES

Lecture 1 

Standing waves
Motivation

This course is Modern Physics for Electrical Engineers.  Why should electrical engineers study modern physics?  First of all we should explain the “modern physics” means quantum physics.  Quantum physics was discovered in the 1910’s and 1920’s because electrons didn’t behave like they were supposed to.  Newton had formulated the laws according to which all particles should move and he had done it in the 17th century.  Up until JJ Thomson discovered the electron in the 1890’s, those laws worked for all the particles that people could see.  But electrons just didn’t follow F=ma.  They could be driven by electrical forces, but their motion was much more jerky than expected in some circumstances, and sometimes they didn’t seem to move like particles at all.  All in all, they behaved in a very strange way, so strange that ultimately F=ma had to be given up and new laws had to be found.

Why should engineers care about this?  Until World War II, they didn’t.  They had laws of electrical conduction, Ohm’s law and the like, that were good enough to run the power industry, after all.  But after the war (and to some extent during it), technology moved beyond those old rules of thumb.  The transistor was invented by people who understood quantum physics, and it could never have been invented otherwise.  It is an utterly quantum mechanical device, as we shall see.  (One of the inventors was John Bardeen, a UW EE graduate.)  These days, all of our electrical and computer technology depends on such devices, and no electrical engineer can afford to be ignorant of quantum physics.  It is now the basis of the discipline.            

Introduction

You probably know that quantum physics is based on what is called the wave-particle duality, so we are going to start by talking separately about waves and then particles.

Waves are one of those patterns in nature that occur over and over and in the most varied circumstances – water waves, waving tree branches, a stretched cord.  These are only visible examples.  We also know of very important invisible waves, such as sound or electromagnetic waves.  Two things required in order to have a wave – a force driving (or at least starting up) the motion, and a restoring force.  In the case of a sound wave, the motion of a larynx or a drumhead might start the wave, and then it is the propensity of air to have a uniform density that provides the restoring force.

To get started on quantum physics, I will focus on the stretched string, such as we have on a guitar.  This string is fixed at the ends, and it vibrates when plucked.  Its contact with the air starts the sound wave that we hear. 
Diagram

The shape of the string at any fixed time can be described by a function y(x).  The collection of all these functions at all times is a function of two variables y(x,t).  The force that actuates it is the pluck.  The restoring force is the tension that wants to straighten the strong out.  The equation of motion when there is no force acting is
μ ∂2y/∂t2 = T ∂2y / ∂x2 
where  T = tension and μ is the mass per unit length.  I can simplify this a bit by dividing by µ:
 ∂2y/∂t2 = v2 ∂2y / ∂x2 , with

v = (T/μ)1/2 being the speed of the waves, as we shall see.  Any equation of this form is called the wave equation.  Modifications of it are usually called “so-and-so’s wave equation”.
Standing waves

Let us try a solution of the form

y(x,t) = y0 sin(kx) sin(ωt). 
Diagram

Then 
∂2y/∂t2 = - ω2 y0 sin(kx) sin(ωt) 
∂2y/∂x2 = - k2 y0 sin(kx) sin(ωt)

and substituting gives

 - ω2 y0 sin(kx) sin(ωt)  = -  v2 k2 y0 sin(kx) sin(ωt)
so this solution does indeed satisfy the wave equation if ω = vk.  The amplitude y0 can be anything.   Remember what all these symbols mean:
one period = 1/f = 2π/ω, where ω is the angular frequency,

f = frequency, k = wavenumber, and λ = 2π/k = wavelength.
Since the string is fixed at the ends, we must have y(x=0,t) = 0 for all times.  I sneakily wrote a solution that satisfies this condition.  We also need y(x=L, t) = 0 for all times.  This is also true for our solution but only if k = π/L, 2π/L, 3π/L, etc., since sin θ = 0 for θ=0, θ=π, θ = 2π, and so on.  The general condition is:
 k = nπ/L, with n = 1,2,3,…

So λ = 2L/n.
What this means is that we have actually written a whole infinite family of solutions, one for each n.   In musical language, the n=1 motion is called the fundamental, n=2 is called the 1st harmonic, n=3 is called the 2nd harmonic, and so on.  The frequency of the strong’s motion, and therefore of the sound we hear, is
ω = (T/μ)1/2 (nπ/L).

This is called quantization, just meaning that only discrete values occur, which is very unlike, say, the orbital frequencies of the planets.  

Note also that any linear combination of these functions will work:

 y(x,t) = Σk y0k sin ωt sin kx

is also a perfectly good solution, for ant set of constants y0k.  The tone quality of musical instruments is determined by the values of these constants, called amplitudes.  If many of the y0k
are large, one gets a more metallic sound, whereas if only one is big, one gets a pure-sounding tone like that of an organ.
