Physics 202, Lecture 3

Today’s Topics

- Electric Field
 - Quick Review
 - Motion of Charged Particles in an Electric Field
- Gauss’s Law (Ch. 24, Serway)
- Conductors in Electrostatic Equilibrium (Ch. 24)
- Homework #2: on WebAssign tonight. Due 9/24, 10 PM

The Electric Field

1. **Charges are a source of electric fields.**

 Single point charge at origin: $\vec{E}(\vec{r}) = k_e \frac{q}{r^2} \hat{r}$

 Visualization: field lines

 Multiple charges: $\vec{E}(\vec{r}) = k_e \sum_i \frac{q_i (\vec{r} - \vec{r}_i)}{|\vec{r} - \vec{r}_i|^3}$

 Distributions: $\vec{E}(\vec{r}) = k_e \int dq (\vec{r} - \vec{r}') \frac{1}{|\vec{r} - \vec{r}'|^3}$
The Electric Field (II)

2. Charges respond to electric fields.

\[\vec{F} = q \vec{E} \]
\[\vec{a} = \frac{\vec{F}}{m} = \frac{q \vec{E}}{m} \]

Example: uniform E field, uniformly accel. motion!

\[v = v_0 + at \]
\[s = s_0 + v_0 t + \frac{1}{2} at^2 \]
\[v^2 = v_0^2 + 2as \]

Exercise: Electron in Uniform E Field

- What is the vertical displacement after an electron passes through a region with uniform electric field \(\mathbf{E} \)?

- Solution: See board. Answer: \(dy = -\frac{1}{2} \left(\frac{|e|}{m} \right) E \left(\frac{r}{v_i} \right)^2 \)
Calculating E Fields

- We have seen how to calculate electric fields given a charge distribution (discrete or continuous)

 often very complicated to carry out analytically! one example: uniform sphere (from last lecture)

- A different but equivalent statement of Coulomb’s law:

 Gauss’s Law

 one of four fundamental equations of electromagnetism (Maxwell’s equations)

Electric Flux

- The electric flux $\Delta \Phi_E$ through an area element ΔA:

 dot product of the electric field and the area vector:

 $\Delta \Phi_E = E \cdot \Delta A = E \Delta A \cos \theta$

 (area vector: normal to surface)

 $\Phi_E = \int E \cdot dA$

- Net electric flux through a closed surface:

 $\Phi_E = \oint E \cdot dA$

 Visualization:

 # field lines through surface
Flux through Closed Surfaces

- Compare fluxes through closed surfaces s_1, s_2, s_3:
 \[\Phi_{s1} = \Phi_{s2} = \Phi_{s3} \]

 (# field lines same through all 3 surfaces)

- Note: if no charge inside surface, $\Phi_{s1} = \Phi_{s2} = \Phi_{s3} = 0!$

 (# field lines going in = # field lines going out)

Gauss's Law (1)

- Gauss’s Law: net electric flux through any **closed** surface (“Gaussian surface”) equals the total charge enclosed inside the closed surface divided by the permittivity of free space.

 \[E = \frac{\sum q_{in}}{\varepsilon_0} \]

 q_{in}: all charges enclosed regardless of positions

 \[\varepsilon_0: \text{permittivity constant} \quad \left(4\pi \varepsilon_0 \right)^{-1} = \kappa \]

 Gaussian surface (any shape)
Gauss’s Law (2)

\[\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\text{in}}}{\varepsilon_0} \]

Gauss’s Law:

True in all situations, but not always easy to use...

However, Gauss’s Law is a powerful calculational tool in specific cases where the charge distribution exhibits a high degree of symmetry.

Using Gauss’ Law

To solve for the electric field using Gauss’s Law, it is necessary to choose a closed (Gaussian) surface such that the surface integral is trivial.

How to choose a Gaussian surface: use symmetry arguments.

1. **Direction.** Choose a surface such that \(\mathbf{E} \) is known to be either parallel or perpendicular to each piece of surface

2. **Magnitude.** Choose a surface such that \(\mathbf{E} \) is known to have the same value at all points on the surface

Then:

\[\oint \mathbf{E} \cdot d\mathbf{A} = \oint E dA = E \oint dA = \frac{q_{\text{in}}}{\varepsilon_0} \]

Given \(q_{\text{in}} \), can solve for \(E \) (at surface), and vice versa
Last Lecture’s Example Again: Uniformly Charged Sphere

- A uniformly charged sphere radius a and total charge Q, find electric field outside and inside the sphere.
- Solution: (see board, note the arguments on symmetry)

Apply Gauss’s Law Outside the Sphere

Apply Gauss’s Law inside the Sphere

Uniform Charge Sphere: Final Solution

<table>
<thead>
<tr>
<th>Inside</th>
<th>Outside</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E = \frac{kQ}{r^2}$</td>
<td>$E = \frac{kQ}{a^2}$</td>
</tr>
</tbody>
</table>

Note: same form as a point charge
Another Example: Thin Spherical Shell

- Find E field inside/outside a uniformly charged thin spherical shell. Solution: see board.

Gaussian Surface for E(outside)
Gaussian Surface for E(inside)

Result

Other examples: Be familiar with them!

- Infinite line of charge
- Infinite uniform charged sheet
- Infinite charged cylinder

Conductors And Electrostatic Equilibrium

- Conductors: charges (electrons) able to move freely
 ➔ Charges redistribute when subject to E field.
- Charge redistribution ➔ electrostatic equilibrium.

Initial ➔ transient, <10^{-16}s
(right after E applied) ➔ equilibrium
Properties of Electrostatic Equilibrium

- E field is always zero inside the conductor.
- E field on the surface of conductor:
 - normal to the surface, and magnitude \(E = \frac{\sigma}{\varepsilon_0} \)
 - (show using Gauss’s law)
- All charges reside on the surface of conductor.
- E field is also zero inside any cavity within the conductor.
 - (why?)

The above properties are valid regardless of the shape of and the total charge on the conductor!

How not to apply Gauss’s Law

- Two charges +2Q and –Q are placed at locations shown. Find the electric field at point P.
- 1. Draw a Gaussian surface passing P
 - 2. Apply Gauss’s law:
 \[\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{in}}{\varepsilon_0} \]
 - \(q_{in} = +2Q + (-Q) = Q \)
 - 3. Surface integral:
 \[\oint \mathbf{E} \cdot d\mathbf{A} = 4\pi r^2 E \]
 - \(E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \)

Is this correct? No! Which step is wrong? Last step
Example

- What is the electric flux through closed surface S?
 - $\Phi = 0$
 - $\Phi = (q_1 + q_2 + q_3 + q_4 + q_5)/\varepsilon_0$
 - $\Phi = (q_1 + q_2 + q_3)/\varepsilon_0$