Searching for Quantum Gravity with Atmospheric Neutrinos

John Kelley December 12, 2008 Thesis Defense

Outline

- Neutrino detection
- New physics signatures
- Data selection
- Analysis methodology
- Results
- Outlook

Neutrino Detection

I. Need an interaction — small cross-section necessitates

2. Then detect the interaction products (say, by their radiation)

Earth's Transparent Medium: H₂O

Mediterranean, Lake Baikal

Antarctic ice sheet

 Array of optical modules on cables ("strings" or "lines")

• High energy muon (~TeV) from charged current v_{μ} interaction

 Good angular reconstruction from timing (O(1°))

 Rough v energy estimate from muon energy loss

• OR, look for cascades $(v_e, v_\tau, NC v_\mu)$

AMANDA-II

• The AMANDA-II neutrino telescope is buried in deep, clear ice, 1500m under the geographic South Pole

• 677 optical modules: photomultiplier tubes in glass pressure housings

 \bullet Muon direction can be reconstructed to within 2-3°

Amundsen-Scott South Pole Research Station

Atmospheric Neutrino Production

Figure from Los Alamos Science 25 (1997)

Cosmic rays produce muons, neutrinos through charged pion / kaon decay

Even with > km overburden, atm. muon events dominate over v by ~10⁶

Neutrino events: reconstruct direction + use Earth as filter, or look only for UHE events

Current Experimental Status

2000-2006 neutrino skymap, courtesy of J. Braun (publication in preparation)

- No detection (yet) of
 - point sources or other anisotropies
 - diffuse astrophysical flux
 - transients (e.g. GRBs, AGN flares, SN)
 - DM annihilation (Earth or Sun)

Astrophysically interesting limits set

Large sample of atmospheric neutrinos
 – AMANDA-II: >5K events, 0.1-10 TeV

Opportunity for particle physics with high-energy atmospheric $\boldsymbol{\nu}$

- Neutrinos are already post-Standard Model (massive)
- For E > 100 GeV and $m_v < 1 \text{ eV}$, Lorentz $\gamma > 10^{11}$
- Oscillations are a sensitive quantum-mechanical interferometer

Eidelman et al.: "It would be surprising if further surprises were not in store..."

New Physics Effects

- Violation of Lorentz invariance (VLI) in string theory or loop quantum gravity^{*}
- Violations of the equivalence principle (different gravitational coupling)[†]
- Interaction of particles with spacetime foam ⇒ quantum decoherence of flavor states[‡]

* see e.g. Carroll *et al.*, PRL **87** 14 (2001), Colladay and Kostelecký, PRD **58** 116002 (1998) see e.g. Gasperini, PRD **39** 3606 (1989)

[‡] see e.g. Anchordoqui *et al.*, hep-ph/0506168

"Fried Chicken" VLI

• Modified dispersion relation*: $E_a^2 = \vec{p}_a^2 c_a^2 + m_a^2 c_a^4$.

- Different maximum attainable velocities c_a (MAVs) for different particles: $\Delta E \sim (\delta c/c)E$
- For neutrinos: MAV eigenstates not necessarily flavor or mass eigenstates ⇒ mixing ⇒ VLI oscillations

$$\mathbf{H}_{\pm} \equiv \frac{\Delta m^2}{4E} \mathbf{U}_{\theta} \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \mathbf{U}_{\theta}^{\dagger} + \frac{\Delta \delta_n E^n}{2} \mathbf{U}_{\xi_n, \pm \eta_n} \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} \mathbf{U}_{\xi_n, \pm \eta_n}^{\dagger}$$

* see Glashow and Coleman, PRD **59** 116008 (1999)

VLI + Atmospheric Oscillations

 $(\Lambda m^2 T)$

\

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^2 2\Theta \sin^2 \left(\frac{\Delta m L}{4E} \mathcal{R}\right)$$
$$\sin^2 2\Theta = \frac{1}{\mathcal{R}^2} (\sin^2 2\theta_{23} + R^2 \sin^2 2\xi + 2R \sin 2\theta_{23} \sin 2\xi \cos \eta) ,$$

$$\mathcal{R} = \sqrt{1 + R^2 + 2R(\cos 2\theta_{23}\cos 2\xi + \sin 2\theta_{23}\sin 2\xi\cos\eta)} ,$$

$$R=rac{\delta c}{c}rac{E}{2}rac{4E}{\Delta m^2_{23}}$$

- For atmospheric v, conventional oscillations turn off above ~50 GeV (L/E dependence)
- VLI oscillations turn on at high energy (*L* E dependence), depending on size of $\delta c/c$, and distort the zenith angle / energy spectrum (other parameters: mixing angle ξ , phase η)

VLI Atmospheric ν_{μ} Survival Probability

Quantum Decoherence (QD)

Another possible low-energy signature of quantum gravity: quantum decoherence

- Heuristic picture: foamy structure of space-time (interactions with virtual black holes) may not preserve certain quantum numbers (like v flavor)
- Pure states interact with environment and decohere to mixed states

Decoherence + Atmospheric Oscillations

AMANDA

$$P[\nu_{\mu} \to \nu_{\mu}] = \left(\frac{1}{3} + \frac{1}{2} \left(e^{-\gamma_{3}L} \cos^{4}\theta_{23} + \frac{1}{12} e^{-\gamma_{8}L} (1 - 3\cos 2\theta_{23})^{2} + 4e^{-\frac{\gamma_{6} + \gamma_{7}}{2}L} \cos^{2}\theta_{23} \sin^{2}\theta_{23} \left(\cos \left[\frac{L}{2}\sqrt{\left| \left(\gamma_{6} - \gamma_{7}\right)^{2} - \left(\frac{\Delta m_{23}^{2}}{E}\right)^{2} \right| \right]} + \sin \left[\frac{L}{2}\sqrt{\left| \left(\gamma_{6} - \gamma_{7}\right)^{2} - \left(\frac{\Delta m_{23}^{2}}{E}\right)^{2} \right| \right]} \frac{(\gamma_{6} - \gamma_{7})}{\sqrt{\left| \left(\gamma_{6} - \gamma_{7}\right)^{2} - \left(\frac{\Delta m_{23}^{2}}{E}\right)^{2} \right| \right|}} \right)\right)$$

derived from Barenboim, Mavromatos et al. (hep-ph/0603028)

Energy dependence depends on phenomenology: $\gamma_i = \gamma_i^* E^n$, $n \in \{-1, 0, 2, 3\}$

n = -1n = 0n = 2n = 3preservessimplestrecoilingPlanck-suppressedLorentz invarianceD-branes*operators‡

*Ellis et al., hep-th/9704169 [‡] Anchordoqui et al., hep-ph/0506168

QD Atmospheric ν_{μ} Survival Probability

Event Selection (2000-2006 data)

• Initial data filtering

- noise + crosstalk cleaning
- bad optical module filtering
- fast directional reconstruction, loose "up-going" cut
- 80 Hz \rightarrow 0.1 Hz
- Final quality cuts
 - iterative full likelihood reconstruction (timing of photon hits)
 - cuts on track quality variables
 - smoothness of hits, angular error estimate, likelihood ratio to downgoing muon fit, space angle between reconstructions, etc.
 - 0.1 Hz \rightarrow 4 / day (for atm. v: 24% eff., 99% purity)
- Final sample: 5544 events below horizon (1387 days livetime)

Purity Level

- Simulating final bit of background not feasible
- Estimate contamination by tightening cuts until data/MC ratio stabilizes
- Procedure shows essentially no contamination at final cut level (strength = 1)

Event 5119326 (May 30, 2005)

199 OMs hit
zenith angle 158°
angular error 0.7°
v energy > ~20 TeV

0└ -1

Testing the Parameter Space

Given observables *x*, want to determine values of parameters $\{\theta_r\}$ that are allowed / excluded at some confidence level

> Binned likelihood + Feldman-Cousins

Feldman-Cousins Recipe (frequentist construction)

• Test statistic is likelihood ratio: $\Delta L = LLH$ at parent $\{\theta_r\}$ - minimum LLH at some $\{\theta_{r,best}\}$ (compare hypothesis at this point to best-fit hypothesis)

$$2\sum_{i=1}^{N} (\mu_i - n_i \ln \mu_i + \ln n_i!)$$

- For each point in parameter space $\{\theta_r\}$, perform many simulated MC "experiments" to see how test statistic varies (close to χ^2)
- For each point $\{\theta_r\}$, find ΔL_{crit} at which, say, 90% of the MC experiments have a lower ΔL
- Compare ΔL_{data} to ΔL_{crit} at each point to determine exclusion region

- How to include nuisance parameters $\{\theta_s\}$:
 - test statistic becomes profile likelihood

$$l = \frac{L(x|\theta_{r0}, \hat{\hat{\theta}}_s)}{L(x|\hat{\theta}_r, \hat{\theta}_s)} \qquad \begin{array}{c} \begin{array}{c} \text{Variable Meaning} \\ \hline \theta_r & \text{physics parameters} \\ \theta_s & \text{nuisance parameters} \\ \hline \hat{\theta}_r, \hat{\theta}_s & \text{unconditionally maximize } L(x|\hat{\theta}_r, \hat{\theta}_s) \\ \hline \hat{\theta}_s & \text{conditionally maximize } L(x|\theta_{r0}, \hat{\theta}_s) \end{array}$$

- MC experiments use "worst-case" value of nuisance parameters (Feldman's profile construction method)
 - specifically, for each θ_r , generate experiments fixing n.p. to data's $\hat{\theta}_s$, then re-calculate profile likelihood as above

Atmospheric Systematics

• Separate systematic errors into four classes, depending on effect on observables:

- normalization
 - e.g. atm. flux normalization
- slope: change in primary spectrum
 - e.g. primary CR slope
- tilt: tilts zenith angle distribution
 - e.g. π/K ratio
- OM sensitivity (large, complicated shape effects)
 - includes uncertainties in ice properties

Systematics Summary

error	type	size	method				
atm. v flux model	norm.	±18%	MC study				
σ_{ν} , ν - μ scattering angle	norm.	±8%	MC study				
reconstruction bias	norm.	-4%	MC study				
v_{τ} -induced muons	norm.	+2%	MC study				
charm contribution	norm.	+ %	MC study				
timing residuals	norm.	±2%	5-year paper				
μ energy loss	norm.	±1%	5-year paper				
rock density	norm.	<1%	MC study				
primary CR slope (incl. He)	slope	$\Delta \gamma = \pm 0.03$	Gaisser et al.				
charm (slope)	slope	$\Delta \gamma = +0.05$	MC study				
π/K ratio	tilt	tilt +1/-3%	MC study				
charm (tilt)	tilt	tilt -3%	MC study				
OM sensitivity, ice	OM sens.	sens. ±10%	MC, downgoing μ				

Results: Observables

Data consistent with atmospheric neutrinos + O(1%) background

Results: VLI upper limit

maximal mixing

• SuperK+K2K limit*:

 $\delta c/c < 1.9 \times 10^{-27}$ (90%CL)

• This analysis:

δc/c < 2.8 × 10⁻²⁷ (90%CL)

• Limits also set on E², E³ effects

*González-García & Maltoni, PRD 70 033010 (2004)

Results: QD upper limit

E² model (E, E³ limits also set)

• SuperK limit[‡] (2-flavor):

 $\gamma_i < 0.9 \times 10^{-27} \text{ GeV}^{-1}$ (90% CL)

• ANTARES sensitivity* (2-flavor):

 $\gamma_i \sim 10^{-30} \text{ GeV}^{-1}$ (3 years, 90% CL)

• This analysis:

 $\gamma_i < 1.3 \times 10^{-31} \text{ GeV}^{-1}$ (90% CL)

* Morgan *et al.*, astro-ph/0412618 [‡] Lisi, Marrone, and Montanino, PRL **85** 6 (2000)

Conventional Analysis

- Parameters of interest: normalization, spectral slope change $\Delta \gamma$ relative to Barr *et al*.
- Result: determine atmospheric muon neutrino flux ("forward-folding" approach)

Translation to Flux

Result Spectrum

Blue band: SuperK data, González-García, Maltoni, & Rojo, JHEP 0610 (2006) 075

IceCube

DOM Calibration

- With J. Braun, developed primary DOM calibration software ("DOM-Cal")
- Bootstrap approach calibrates:
 - front-end amplifier gain
 - waveform charge vs. time
 - PMT gain vs. high voltage
 - PMT transit time vs. high voltage
- Entire detector (2500+ DOMs) calibrates itself in parallel in ~I hour

Gain Calibration

Name DOM Id 1200V 1300V 1400V 1500V 1600V PV+4.5 Noise=778Hz Mean=0.6pC PV+3.2 Nuice=708H2 Mean=1.2pC PV+2.5 Noise+957Hz Mean+2.2pC PV=3.0 Naioe=915Hz Mean=3.6pC PV=3.7 Noise=1130Hz Mean=5.6pC 201 201 Radeberger_Pilsener b804f6f38a45 0.0 0.8 1.6 2.4 3.2 0.0 12 2.4 1.6 4.8 0.0 1.0 3.6 5.4 7.2 0.0 2.6 5.2 7.8 10.4 8.0 12.0 16.0 0.0 4.0 PV+3.3 Naise=806Hz Mean=1.7pC PV+3.4 Noise=825Hz Mest=2.9pC PV+3.4 Noise+1227Hz Mean+4.8pC PV=4.2 Noise=1442H2 Mean=7.7pC PV+0.0 Noise=712H2 Mean=0.9pC 200 200 Erik_the_Red 38ae7fdfc4c7 500 0.0 0.8 1.6 2.4 1.2 0.0 12 2.4 1.6 4.8 0.0 1.0 3.6 5.4 7.2 0.0 2.6 5.2 7.8 10.4 0.0 4.0 8.0 12.0 16.0 PV+2.2 Noise=734H2 Mean=1.6pC PV+2.4 Noise=818Hz Mean+2.8pC PV+3.2 Noise=813Hz Mean+4.4pC PV+0.0 Noise=341H2 Mean=0.8pC PV=3.9 Noise=527Hz Mean=7.0pC 150 Cholesterol 6c34a4a77c08 0.0 0.8 1.6 2.4 3.2 0.0 1.2 2.4 3.6 4.8 0.0 1.0 3.6 5.4 7.2 0.0 2.6 5.2 7.8 10.4 0.0 4.0 8.0 12.0 16.0

DOMs fit their own single PE charge spectra!

IceCube VLI Sensitivity

IceCube: sensitivity of $\delta c/c \sim 10^{-28}$ Up to 700K atmospheric v_{μ} in 10 years

(González-García, Halzen, and Maltoni, hep-ph/0502223)

Other Possibilities

• Extraterrestrial neutrino sources would provide even more powerful probes of QG

- GRB neutrino time delay (see, e.g. Amelino-Camelia, gr-qc/0305057)
- Electron antineutrino decoherence from, say, Cygnus
 OB2 (see Anchordoqui *et al.*, hep-ph/0506168)
- Hybrid techniques (radio, acoustic) + Deep Core will extend energy reach in both directions

Thank you!

- Lorentz and/or CPT violation is appealing as a (relatively) low-energy probe of QG
- Effective field-theoretic approach by Kostelecký et al. (SME: hep-ph/9809521, hep-ph/0403088)

 $(i\Gamma^{\nu}_{AB}\partial_{\nu} - M_{AB})\nu_B = 0$

 $\Gamma^{\nu}_{AB} \equiv \gamma^{\nu} \delta_{AB} + \frac{c^{\mu\nu}_{AB} \gamma_{\mu}}{m_{5AB} \gamma_{5}} + \frac{d^{\mu\nu}_{AB} \gamma_{5} \gamma_{\mu}}{m_{AB} + e^{\nu}_{AB} + if^{\nu}_{AB} \gamma_{5}} + \frac{1}{2} g^{\lambda\mu\nu}_{AB} \sigma_{\lambda\mu},$ $M_{AB} \equiv m_{AB} + im_{5AB} \gamma_{5} + \frac{a^{\mu}_{AB} \gamma_{\mu}}{m_{AB} + b^{\mu}_{AB} \gamma_{5}} \gamma_{\mu} + \frac{1}{2} H^{\mu\nu}_{AB} \sigma_{\mu\nu}.$

Addition of renormalizable VLI and CPTV+VLI terms; encompasses a number of interesting specific scenarios

VLI Phenomenology

• Effective Hamiltonian (seesaw + leading order VLI+CPTV):

$$\begin{split} (h_{\text{eff}})_{ab} &= |\vec{p}| \delta_{ab} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2|\vec{p}|} \begin{pmatrix} (\widetilde{m}^2)_{ab} & 0 \\ 0 & (\widetilde{m}^2)^*_{ab} \end{pmatrix} \\ &+ \frac{1}{|\vec{p}|} \begin{pmatrix} [(a_L)^{\mu} p_{\mu} - (c_L)^{\mu\nu} p_{\mu} p_{\nu}]_{ab} & -i\sqrt{2}p_{\mu}(\epsilon_{+})_{\nu} [(g^{\mu\nu\sigma} p_{\sigma} - H^{\mu\nu})\mathcal{C}]_{ab} \\ i\sqrt{2}p_{\mu}(\epsilon_{+})^*_{\nu} [(g^{\mu\nu\sigma} p_{\sigma} + H^{\mu\nu})\mathcal{C}]^*_{ab} & [-(a_L)^{\mu} p_{\mu} - (c_L)^{\mu\nu} p_{\mu} p_{\nu}]^*_{ab} \end{pmatrix} \end{split}$$

- To narrow possibilities we consider:
 - rotationally invariant terms (only time component)
 - only $c_{AB}^{00} \neq 0$ (leads to interesting energy dependence...)

Galactic Plane Limits

On-source region	On-source events	Expected background	90% event upper limit	Line source limit	Diffuse limit	Gaussian limit
±2.0°	128	129.4	19.8	6.3 × 10 ⁻⁵	6.6 × 10 ⁻⁴	
±4.4°	272	283.3	20.0			4.8 × 10 ⁻⁴
						A

Data used: AMANDA 2000-03

Limits include systematic uncertainty of 30% on atm. ν flux

Energy range: 0.2 to 40 TeV