
# Dark Matter Detection

John Kelley IceCube Journal Club 27 February 2008

Image: NASA, ESA, and M.J. Jee (Johns Hopkins University)

### What is dark matter?

- Experimental evidence is pretty overwhelming
  - galaxy rotation, lensing, structure formation, CMB, etc.
- "Coincidence" between weak scale interactions and necessary relic abundance suggests WIMPs
- Calculating rates in detectors requires a specific model







- Well-motivated extension to SM, adds superpartners (fermion ↔ boson)
- Add in *R-parity* (adds B, L conservation back in), you get a stable LSP
- Minimal model ("MSSM") still gives you plenty to work with (63 new parameters)
   Graphic: Symmetry (Fermilab / SLAC)

| Normal particles   |                    | SUSY partners                                 |                   |
|--------------------|--------------------|-----------------------------------------------|-------------------|
| Symbol             | Name               | $\mathbf{Symbol}$                             | Name              |
| q=u,c,t            | up quarks          | ${	ilde q}^1_u,,{	ilde q}^6_u$                | up squarks        |
| q=d,s,b            | down quarks        | ${\widetilde{q}}_d^1,,{\widetilde{q}}_d^6$    | down squarks      |
| $l=e,\mu,	au$      | leptons            | $\tilde{l}_1, \ldots, \tilde{l}_6$            | sleptons          |
| ν                  | neutrinos          | $	ilde{ u}_1,,	ilde{ u}_3$                    | ${ m sneutrinos}$ |
| g                  | gluons             | $\widetilde{g}$                               | gluinos           |
| $W^{\pm}$          | W boson            | $	ilde{\chi}_1^{\pm}$ , $	ilde{\chi}_2^{\pm}$ | charginos         |
| $H^{\pm}$          | charged Higgs      |                                               |                   |
| $\gamma$           | photon             |                                               |                   |
| $Z^0$              | Z boson            |                                               |                   |
| $h^{0}(H^{0}_{2})$ | light scalar Higgs | $	ilde{\chi}^0_1,,	ilde{\chi}^0_4$            | neutralinos       |
| $H^{0}(H^{0}_{1})$ | heavy scalar Higgs |                                               |                   |
| $A^0 (H^0_3, P_0)$ | pseudoscalar Higg  | s                                             |                   |

LSP candidate: mixture of photino, zino, (or bino, wino<sup>\*</sup> — "gaugino") and higgsino \* "recall" SM Higgs mechanism: photon and Z from mixing of W<sup>3</sup> and B fields

from Supersymmetric Dark Matter, Jungman, Kamionkowski, and Greist, Phys. Rep. 267

http://t8web.lanl.gov/people/jungman/susyreview/susyreview.ps.gz

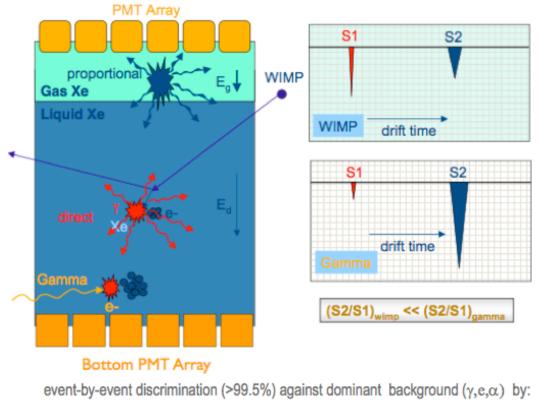
# LSP neutralino cross-sections

- Two cross sections important: annihilation, elastic scattering with nuclei
- Components of cross sections depend on gaugino / higgsino composition (among other things) and also on target

 $\sigma_{\text{SD}}$ 

 $\sigma_{\rm SI}$ 

- spin-dependent (nucleon spin / WIMP spin)
- axial vector interaction ( $\gamma_{\mu}\gamma_{5}$ )
- Z exchange, squark exchange
- Can be larger for higgsino-like
- Can be larger for light nuclei


- spin-independent
- scalar interaction
- Higgs exchange, squark exchange, loops with gluons
- Can be larger for gaugino-like (wino, bino)
- Almost always larger for heavy nuclei

### AAAAH!

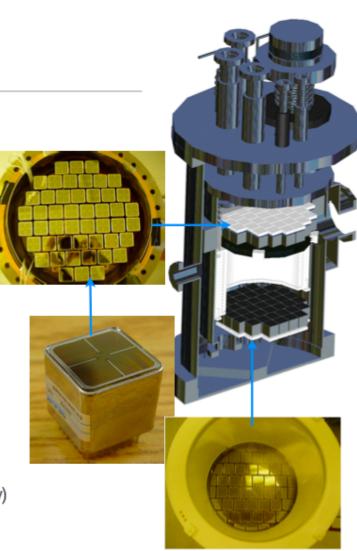


Point to remember: cross sections are very model dependent, and different ones are important for different experiments

# Direct DM searches with xenon



· Simultaneous Detection of scintillation (S1) and ionization (S2)

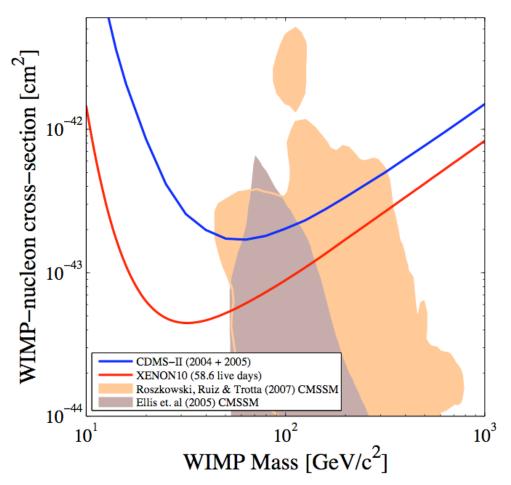

3D Event Localization

E. Aprile: <u>http://xenon.astro.columbia.edu/talks/APS2007/aprile-aps\_2007.pdf</u>

#### The XENON10 Detector

#### • 22 kg of liquid xenon

- ➡ 15 kg active volume
- ⇒ 20 cm diameter, 15 cm drift
- Hamamatsu R8520 1"×3.5 cm PMTs bialkali-photocathode Rb-Cs-Sb, Quartz window; ok at -100°C and 5 bar Quantum efficiency > 20% @ 178 nm
- 48 PMTs top, 41 PMTs bottom array
  - ⇒ x-y position from PMT hit pattern;  $\sigma_{x-y} \approx 1 \text{ mm}$
  - ⇒ z-position from  $\Delta t_{drift}$  (v<sub>d,e-</sub> ≈ 2mm/µs), σ<sub>Z</sub>≈0.3 mm
- Cooling: Pulse Tube Refrigerator (PTR), 90W, coupled via cold finger (LN<sub>2</sub> for emergency)



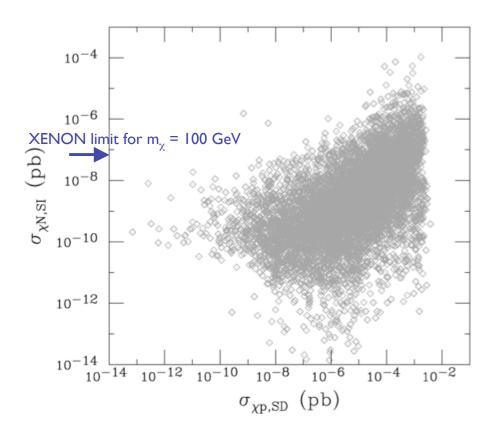

R. Gaitskell: <u>http://gaitskell.brown.edu/physics/talks/0703\_C2CR07/070228\_DM\_Noble\_Gaitskell\_v02.pdf</u>

### First Results

#### http://arxiv.org/abs/0706.0039

- 58.6 days of livetime
- This analysis: spinindependent cross-section (but SD analysis via odd isotopes forthcoming)
- Best existing SI limits
- Plan: 10 modules by 2009




# DM detection in IceCube

ν

- Basic idea: Sun captures DM (depends on ES cross section with H & He, historical density of DM, etc.)
- DM annihilates in sun (another cross section) to  $b\overline{b}$ , W<sup>+</sup>W<sup>-</sup>, ZZ,  $\tau^+\tau^-$ , etc.
- Produces v of E ~ I/3-I/2  $m_{\chi}$  ~ O(100 GeV)

# Halzen & Hooper calculations

#### http://arxiv.org/abs/hep-ph/0510048



 $I pb = 10^{-36} cm^2$ 

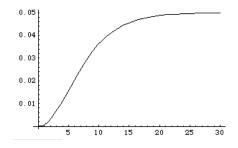
- Idea: σ<sub>SI</sub> is being probed
   to small values by direct detection experiments
- But there are a wide range of models with small  $\sigma_{\rm SI}$  and large  $\sigma_{\rm SD}$
- This means:
  - an IceCube signal is not ruled out
  - IceCube searches are complementary

### The Math of Annihilation

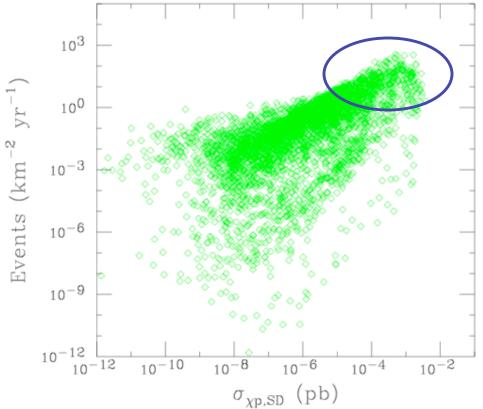
Capture rate (WIMPs gained / sec):

$$C^{\odot} \simeq 3.35 \times 10^{20} \,\mathrm{s}^{-1} \left( \frac{\rho_{\rm local}}{0.3 \,\mathrm{GeV/cm^3}} \right) \left( \frac{270 \,\mathrm{km/s}}{\bar{v}_{\rm local}} \right)^3 \left( \frac{\sigma_{\rm H,SD} + \sigma_{\rm H,SI} + 0.07 \,\sigma_{\rm He,SI}}{10^{-6} \,\mathrm{pb}} \right) \left( \frac{100 \,\mathrm{GeV}}{m_{\rm WIMP}} \right)^2$$
(1)

Annihilation rate (WIMPs lost / sec):


$$A^{\odot}N^2 \qquad \qquad A^{\odot} = rac{\langle \sigma v 
angle}{V_{ ext{eff}}}$$

DE for N(t):

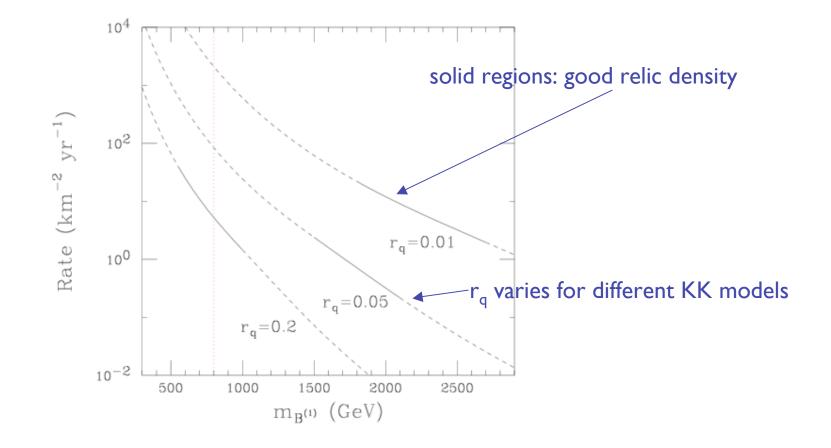

 $\dot{N} = C^{\odot} - A^{\odot}N^2$  solution for N<sub>0</sub> = 0 is N(t) = sqrt(C/A) tanh(sqrt(CA) t)

Annihilation rate now (annihilations / sec):

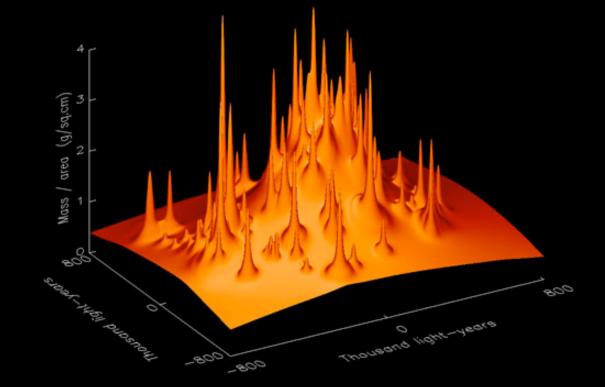
$$\Gamma = \frac{1}{2} A^{\odot} N^2 = \frac{1}{2} C^{\odot} \tanh^2 \left( \sqrt{C^{\odot} A^{\odot}} t_{\odot} \right)$$



# Neutralino $v_{\mu}$ Event Rates




- All models evade 2005 CDMS bound by 100x (so also evade XENON10 bound)
- Interesting models: higgsino fraction > 1%
- NB: muon threshold assumed of 50 GeV (deep core extension will help!)


### **Other Possibilities**

- SUSY dark matter not the only possibility
- Universal Extra Dimensions model
  - extra compact dimensions
  - SM particles + momenta in the extra dimensions:
     "tower" of KK partners
  - existence of a stable lightest KK particle (LKP); could be DM
  - could have large  $\sigma_{\rm p,SD}$  but small  $\sigma_{\rm N,SI}$

#### IceCube Event Rates



# The End



CL00024 mass distribution, lsst.org