Observation of deep, distant impulsive RF transmitters by the Askaryan Radio Array

John Kelley*, Ming-Yuan Lu, University of Wisconsin–Madison David Besson, University of Kansas David Seckel, Yue Pan, University of Delaware for the ARA Collaboration

July 14, 2017, 35th ICRC, Busan, Korea *speaker

Neutrino / Cosmic Ray Connections

 Can neutrinos reveal origins of ultra-high-energy cosmic rays?

$$p\gamma \rightarrow p\pi^{0}, n\pi^{+}$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

- Cosmogenic neutrino flux on CMB ($E_v \sim 10^{18} \text{ eV}$)
- Neutrinos generated in accelerator region on photon background or in hadronic interactions (E_v ~ 10¹⁵ eV)

Radio Detection of Neutrinos

150

1500

1000

500

0

-500

-1000

-1500

simulated 10¹⁸ eV neutrino event

Many km² target needed for ultra-high-energy meutrino detection

- Neutrino-induced showers in ²⁰⁰dense media produce broadband ³ string and oppulses (Askaryan effect)
 - detectable by radio antennas

1000

300

-100

- Ice is RF-transpare[™]t and plentiful in Antarctica
 - O(km) attenuation lengths
 - ANITA (balloon), ARIANNA (Ross
- ²⁵⁰ ice⁰shelf), 4ARA (South1₽0)²⁵⁰ 150 J. Kelley, 35th ICRC

string3.ant3 type1

ARA Station Layout

Optics in South Pole Ice

- Index of refraction a function of depth (firn layer)
- Radio waves bend away from surface
- Multiple paths possible
 quasi-direct (QD)
 quasi-reflected (QR)

Deep Calibration Pulsers

Raytraced Radio Paths

Deep Pulser Event (IC-I to ARA-2)

both pulses observed: QD (upgoing) and QR (downgoing)

J. Kelley, 35th ICRC

Timing Analysis via Cross-correlation

- Time-difference analysis via crosscorrelation of antenna signals
 - four QD/QR pairs
 - peaks of Hilbert
 envelope
- Observations consistent with ice model raytracing

top Vpol / bottom Vpol cross-correlation

Directional Reconstruction (QD only)

- cross-correlation reconstruction of QD pulses
 - sum of CC pairs for all directions in sky
 - see also M.-Y. Lu NU080,
 JK poster
- O(degree) directional resolution
 - distance reconstruction very difficult due to near-planewave timing

Distance Reconstruction with Both Pulses

- QD+QR: stereoscopic view of event allows vertex reconstruction
- Distance resolution of O(100) m
- Next step event-byevent reconstruction
 - improvement in angular resolution also expected

Hpol vs. Vpol Signals

fraction of Hpol arrives ~30 ns early (also on-time cross-polarization)

Birefringence

- consistent time delay across events, antenna pairs
- evidence of birefringence
 - previously observed with nearvertical pulses in deep ice§
 - order-of-magnitude of effect reasonable (~ 10^{-3})
- next steps: fully understand and model this effect

§Kravchenko et al., Astropart. Phys. 34, 10 (2011)

SPICE Hole Logging (2018)

Conclusions

- Observation of deep calibration pulser events in ARA
 validates ice model, geometric optics paradigm
- Reflected pulses allow distance reconstruction of distant event
 close events via direct ray timing (wavefront curvature)
- Evidence of birefringence from Hpol signals
 - potentially another handle on vertex distance
- SPICE hole logging planned for this pole season
 - refine model of index of refraction vs. depth
 - birefringence vs. depth, ice flow

Backup

Previous Measurements

J. Kelley, 35th ICRC

Hpol/Vpol Cross-Correlations

