





A New Window onto Ultra-high Energy Cosmic Rays: Super-hybrid Air Shower Observations at the Pierre Auger Observatory

John Kelley Radboud University Nijmegen The Netherlands

Colloquium, SISSA Trieste, Italy 14 June 2011

#### Ultra-High Energy Cosmic Rays (UHECR)



- Highest energy particles known in the Universe
- Composition unknown
- Sources + acceleration mechanism unknown
  - Astrophysical acceleration or decay of exotic particles?

#### Ultra-High Energy Cosmic Rays (UHECR)



- Highest energy particles known in the Universe
- Composition unknown
- Sources + acceleration mechanism unknown
  - Astrophysical acceleration or decay of exotic particles?
- Cutoff in energy spectrum or not?
  - Expected from interactions with CMB (GZK effect)
  - no cutoff... Lorentz violation?

 $s^{-1} sr^{-1} eV^{-1}$ 

### Pierre Auger Observatory

- Hybrid cosmic ray air shower detector
- Southern site (3000 km<sup>2</sup>) in Argentina completed 2008



- Energy threshold:
  - $E > 10^{18} eV$  full array
  - $E > 10^{17} eV$  infill array







# UHECR Energy Spectrum after Auger



Phys. Lett. B685 (2010) 239

- 2008: Continuation of power law rejected at 6σ (confirms HiRes)
- Suppression energy consistent with GZK onset (limits on LV)
- 2009: combined FD + SD spectrum
  - protons with strong source evolution?
  - iron with another component below ankle?
- Difficult to rule out non-GZK causes
  - source cutoff?

# **UHECR** Anisotropy

 Extragalactic protons above 50 EeV or so should point back to sources (within a few degrees)

$$\theta(E,Z) \approx \left(\frac{L}{L_{\rm coh}}\right)^{0.5} \alpha \approx 0.8^{\circ} \left(\frac{10^{20} \,\mathrm{eV}}{E}\right) \left(\frac{L}{10 \,\mathrm{Mpc}}\right)^{0.5} \left(\frac{L_{\rm coh}}{1 \,\mathrm{Mpc}}\right)^{0.5} \left(\frac{B}{1 \,\mathrm{nG}}\right) Z,$$

Hooper et al. 2008

- Pre-Auger: claims of excess from Galactic Center, BL-Lacs, etc.
- Anisotropy with low statistics is a tricky business

### Arrival Directions (2007)



2007: 27 events above 55 EeV (ovals)

Excluding data from exploratory scan: 9 of 13 events correlate with nearby AGN in VCV catalog (69%; 21% expected for isotropy)

P-value for isotropic hypothesis:  $0.0002 (3.7\sigma)$ 

J. Kelley, SISSA Colloquium

#### Arrival Directions: Update



2009: 69 events above 55 EeV

Correlating fraction has decreased: now 21 of 55 (38%)

P-value of isotropic hypothesis: 0.003 (3.0 $\sigma$ ) To reach 5 $\sigma$ : ~4 more years of data

J. Kelley, SISSA Colloquium

A posteriori Investigations: flux-weighted density maps



$$F(\mathbf{\hat{n}}) = \frac{\varepsilon(\mathbf{\hat{n}})\mu(\mathbf{\hat{n}})}{I} \left[\frac{f_{\rm iso}}{\Omega} + (1 - f_{\rm iso})\frac{\phi(\mathbf{\hat{n}})}{\langle \phi \rangle}\right] \qquad \phi(\mathbf{\hat{n}}) = \sum_{i=1}^{N_{\rm cat}} w(z_i) \ e^{-\frac{d(\mathbf{\hat{n}_i}, \mathbf{\hat{n}})^2}{2\sigma^2}}$$

J. Kelley, SISSA Colloquium

14.6.2011

#### Results (Excluding Exploratory Data)



J. Kelley, SISSA Colloquium

# Centaurus A Region



- Cen A: closest AGN (3.7 Mpc)
- Largest CR overdensity within 4° of Cen A core
- Region also contributes to flux-weighted models



• Investigations ongoing

## Composition

- Slant depth X<sub>max</sub> (integrated density) of shower maximum in atmosphere
  - energy and composition-dependent
  - higher in atmosphere for heavier nuclei (interact, lose energy sooner)
- Shower-to-shower fluctuations of X<sub>max</sub>
  - iron showers (~superposition of many single-nucleon showers) have fewer fluctuations
- Can also be used for UHE photon searches



#### Latest Results: Composition

Phys. Rev. Lett 104 (2010) 901101



Both indicate composition getting heavier...

or protons behaving differently than expected? (see e.g. Ulrich *et al.*, arXiv:0906.3075)

Need hybrid measurements at highest energies!

J. Kelley, SISSA Colloquium

## Auger North



J. Kelley, SISSA Colloquium

#### Enhancements at Auger South

#### HEAT: High Elevation Auger Telescopes





AMIGA: Auger Muon and Infill Ground Array

AERA: Auger Engineering Radio Array



#### Radio Emission from Air Showers

- Separation, acceleration of e<sup>+</sup>, e<sup>-</sup> in geomagnetic field
  - secondary: charge excess, moving dipole
- Broadband radio pulse (width ~50 ns)
- Interesting because of <u>high duty cycle</u> and <u>access to shower development</u>
- Hybrid measurement all the time!



# (Primarily) Geomagne



 Simplification: geomagnetic origin implies

● B

 $e^+$ 

įin

 $\vec{E} \propto \vec{v} \times \vec{B}$ 

- Asymmetry confirmed with LOPES, CODALEMA experiments
- Full story is actually more complicated...

#### **3D** Localization of Emission



Sample LOPES radio flash triggered with KASKADE

Technique works... but can one build a large, autonomous array? Is it suitable for the next generation ~10000 km<sup>2</sup> detector?

## Auger Engineering Radio Array



- 20 km<sup>2</sup> extension to southern site: 160 radio detector stations
- 2010: deployed dense core (21 stations)

#### **AERA** Station





# Stage I Deployment: Antennas

- Log-periodic dipole antennas
- Wideband: 30-80 MHz
- Two polarizations; aligned to magnetic north to within 1°



# Stage I Deployment: Optical Fiber



# Stage I Deployment: Stations





Sept 2010





J. Kelley, SISSA Colloquium

# Stage I Deployment: Central Container



## Sample Untriggered Data



#### Observation of Galactic Background

#### NS Channel, one station 10 s traces, Oct 8th - Oct 13th



Rise of Galactic Center:LST 10:10Maximum:LST 17:45Set of Galactic Center:LST 01:15

## Self-Triggered Events



#### Skyplot of Reconstructed Events



#### **Direction of Noise Sources**



# Noise Management

- Trigger rates in hardware and software are limited, so...
- Veto horizontal sources via directional reconstruction in level 3 trigger
- Veto repeating (50 Hz) events
- Digital narrowband filters to improve signal-to-noise



#### Hybrid Self Triggered Cosmic Rays



 First hybrid cosmic ray detections in mid-April

 coincidences with SD!

 First super-hybrid event at end of April

 radio, SD, and FD

# Hybrid Events (as of 2 June)



### First Super-Hybrid Event



# Next Steps



# **AERA Physics Program**



- I. Full understanding of all radio emission mechanisms
- 2. Potential of radio technique for primary energy and mass determination
- Composition of ankle region; understanding Galactic to extra-galactic transition
- 4. ... scale up!

# Summary

- Pierre Auger UHECR results (and remaining questions)
  - suppression in spectrum (GZK or intrinsic to source?)
  - suggestive anisotropy results (really AGN? role of Cen A?)
  - composition getting heavier (compatible with anisotropy?)
- Radio detection is maturing
  - delay in Auger North... but new technologies under development
  - super-hybrid observations underway
- Updates on many analyses at ICRC... stay tuned!

# Thank you!

J. Kelley, SISSA Colloquium

## **UHE Photon Searches**

- Auger can detect primary UHE photons!
  - $E > 10^{18} \text{ eV} (\lambda < 10^{-24} \text{ m})$
  - D<sub>att</sub> ~ 10 Mpc
- Air shower development lower in atmosphere than p, Fe
- Predicted by many topdown CR models, some VLI scenarios



#### **UHE Photon Upper Limits**



#### Neutrino Detection via Air Showers



**Electrons & Photons** 

Tau decay

"normal" inclined shower: only muons left

neutrino-induced shower: young EM component (broad signals in tanks)



dense target, but only

**Muons** 

#### Limits on Diffuse Neutrino Flux

