PIERRE AUGER OBSERVATORY

A New Window onto Ultra-high Energy Cosmic Rays: Super-hybrid Air Shower Observations at the Pierre Auger Observatory

John Kelley
Radboud University Nijmegen
The Netherlands

Colloquium, SISSA
Trieste, Italy
14 June 2011

Ultra-High Energy Cosmic Rays (UHECR)

- Highest energy particles known in the Universe
- Composition unknown
- Sources + acceleration mechanism unknown
- Astrophysical acceleration or decay of exotic particles?

Ultra-High Energy Cosmic Rays (UHECR)

- Highest energy particles known in the Universe
- Composition unknown
- Sources + acceleration mechanism unknown
- Astrophysical acceleration or decay of exotic particles?
- Cutoff in energy spectrum or not?
- Expected from interactions with CMB (GZK effect)
- no cutoff... Lorentz violation?

Pierre Auger Observatory

- Hybrid cosmic ray air shower detector
- Southern site (3000 km^{2}) in Argentina completed 2008

Data and Observables

Data and Observables

Data and Observables

UHECR Energy Spectrum after Auger

- 2008: Continuation of power law rejected at 6σ (confirms HiRes)
- Suppression energy consistent with GZK onset (limits on LV)
- 2009: combined FD + SD spectrum
- protons with strong source evolution?
- iron with another component below ankle?
- Difficult to rule out nonGZK causes
- source cutoff?

UHECR Anisotropy

- Extragalactic protons above 50 EeV or so should point back to sources (within a few degrees)
$\theta(E, Z) \approx\left(\frac{L}{L_{\mathrm{coh}}}\right)^{0.5} \alpha \approx 0.8^{\circ}\left(\frac{10^{20} \mathrm{eV}}{E}\right)\left(\frac{L}{10 \mathrm{Mpc}}\right)^{0.5}\left(\frac{L_{\mathrm{coh}}}{1 \mathrm{Mpc}}\right)^{0.5}\left(\frac{B}{1 \mathrm{nG}}\right) Z$,

Hooper et al. 2008

- Pre-Auger: claims of excess from Galactic Center, BL-Lacs, etc.
- Anisotropy with low statistics is a tricky business

Arrival Directions (2007)

2007: 27 events above 55 EeV (ovals)
Excluding data from exploratory scan: 9 of 13 events correlate with nearby AGN in VCV catalog (69%; 21% expected for isotropy)
P-value for isotropic hypothesis: 0.0002 (3.7б)

Arrival Directions: Update

2009:69 events above 55 EeV

Correlating fraction has decreased: now 2 I of 55 (38\%)
P-value of isotropic hypothesis: 0.003 (3.0б)
To reach $5 \sigma: \sim 4$ more years of data

A posteriori Investigations: flux-weighted density maps

2MRS galaxy survey
Swift-BAT X-ray AGN

$$
F(\hat{\mathbf{n}})=\frac{\varepsilon(\hat{\mathbf{n}}) \mu(\hat{\mathbf{n}})}{I}\left[\frac{f_{\text {iso }}}{\Omega}+\left(1-f_{\text {iso }}\right) \frac{\phi(\hat{\mathbf{n}})}{\langle\phi\rangle}\right] \quad \phi(\hat{\mathbf{n}})=\sum_{i=1}^{N_{\text {cat }}} w\left(z_{i}\right) e^{-\frac{d\left(\hat{\mathbf{n}}_{i}, \hat{\mathbf{n}}\right)^{2}}{2 \sigma^{2}}}
$$

Results (Excluding Exploratory Data)

Centaurus A Region

- Cen A: closest AGN (3.7 Mpc)
- Largest CR overdensity within 4° of Cen A core
- Region also contributes to flux-weighted models

- Investigations ongoing

Composition

- Slant depth $\mathrm{X}_{\text {max }}$ (integrated density) of shower maximum in atmosphere
- energy and composition-dependent
- higher in atmosphere for heavier nuclei (interact, lose energy sooner)

- Shower-to-shower fluctuations of $X_{\max }$
- iron showers (\sim superposition of many single-nucleon showers) have fewer fluctuations
- Can also be used for UHE photon searches

$\mathrm{X}_{\text {max }}$

Latest Results: Composition

Phys. Rev. Lett 104 (2010) 901101

Both indicate composition getting heavier...
or protons behaving differently than expected?
(see e.g. Ulrich et al., arXiv:0906.3075)
Need hybrid measurements at highest energies!

Auger North

- Optimized for science and costs
- Surface array with 4000 ons: 20,000 km² with $\sqrt{2}$-mile $=2.3 \mathrm{~km}$ grid
- Infill array with 400 statio 2,000 km² with 1 -mile $=1.6 \mathrm{~km}$ grid
- 39 fluorescence telescopes

Enhancements at Auger South

HEAT: High Elevation Auger Telescopes

AMIGA:Auger Muon and Infill Ground Array

AERA:Auger Engineering Radio Array

Radio Emission from Air Showers

- Separation, acceleration of $\mathrm{e}^{+}, \mathrm{e}^{-}$in geomagnetic field
- secondary: charge excess, moving dipole
- Broadband radio pulse (width ~50 ns)
- Interesting because of high duty cycle and access to shower development
- Hybrid measurement all the time!

(Primarily) Geomagnetic Origin

- Simplification: geomagnetic origin implies

$$
\vec{E} \propto \vec{v} \times \vec{B}
$$

- Asymmetry confirmed with LOPES, CODALEMA experiments
- Full story is actually more complicated...

3D Localization of Emission

Sample LOPES radio flash triggered with KASKADE

Technique works... but can one build a large, autonomous array? Is it suitable for the next generation $\sim 10000 \mathrm{~km}^{2}$ detector?

Auger Engineering Radio Array

- $20 \mathrm{~km}^{2}$ extension to southern site: 160 radio detector stations
- 2010: deployed dense core (21 stations)

AERA Station

Stage I Deployment:Antennas

- Log-periodic dipole antennas
- Wideband: $30-80 \mathrm{MHz}$
- Two polarizations; aligned to magnetic north to within I°

Stage I Deployment: Optical Fiber

Stage I Deployment: Stations

Stage I Deployment: Central Container

Sample Untriggered Data

2 polarizations, high- and low-gain

After Fourier transform

Observation of Galactic Background

NS Channel, one station 10 s traces, Oct 8th - Oct 13th

Rise of Galactic Center: LST 10:10
Maximum:
LST 17:45
Set of Galactic Center: LST 01:15

Self-Triggered Events

Largest pulses
 (sometimes saturation of ADC) from close-by source steep drop-off in pulse height mostly from northwest direction

Very large pulses: 2200 ADC counts

Skyplot of Reconstructed Events

Station trigger: $\sim 5 \sigma$ Galactic noise, pulse shape requirements ($\sim 200 \mathrm{~Hz}$)

L3 trigger: 3 neighboring stations in coincidence

99k events in 30.5 hours (0.9 Hz)

Direction of Noise Sources

Noise Management

- Trigger rates in hardware and software are limited, so...
- Veto horizontal sources via directional reconstruction in level 3 trigger
- Veto repeating $(50 \mathrm{~Hz})$ events
- Digital narrowband filters to improve signal-to-noise

Hybrid Self Triggered Cosmic Rays

- First hybrid cosmic ray detections in mid-April - coincidences with SD!
- First super-hybrid event at end of April
- radio, SD, and FD

Hybrid Events (as of 2 June)

27 events: 0.3 to 0.9 per day

First Super-Hybrid Event

Next Steps

- Disentangle sub-dominant emission mechanisms
- polarization is the key
- Multi-dimensional LDF
- improved directional reconstruction
- shower parameters (energy, shower maximum)
- cross-check with SD, FD

AERA Physics Program

I. Full understanding of all radio emission mechanisms
2. Potential of radio technique for primary energy and mass determination
3. Composition of ankle region; understanding Galactic to extra-galactic transition
4. ... scale up!

Summary

- Pierre Auger UHECR results (and remaining questions)
- suppression in spectrum (GZK or intrinsic to source?)
- suggestive anisotropy results (really AGN? role of Cen A?)
- composition getting heavier (compatible with anisotropy?)
- Radio detection is maturing
- delay in Auger North... but new technologies under development
- super-hybrid observations underway
- Updates on many analyses at ICRC... stay tuned!

Thank you!

UHE Photon Searches

- Auger can detect primary UHE photons!
$-E>10^{18} \mathrm{eV}\left(\lambda<10^{-24} \mathrm{~m}\right)$
$-D_{\text {att }} \sim 10 \mathrm{Mpc}$
- Air shower development lower in atmosphere than p, Fe
- Predicted by many topdown CR models, some VLI scenarios

UHE Photon Upper Limits

strongly constrain top-down models

Neutrino Detection via Air Showers

"normal" inclined shower: only muons left
neutrino-induced shower: young EM component (broad signals in tanks)

tau decay from Earth-skimming ν_{τ} : dense target, but only one flavor

Limits on Diffuse Neutrino Flux

One flavour neutrino limits ($90 \% \mathrm{CL}$)

