

The Pierre Auger Observatory: Recent Results and Future Plans

John Kelley for the Pierre Auger Collaboration

Radboud University Nijmegen The Netherlands

> Beyond 2010, Cape Town February 4, 2010

Cosmic Ray Spectrum

- Charged particles with steep power law spectrum
- Low flux at high energy: detect via extensive air showers
- Opportunities for new physics:
 - cosmic ray sources
 - cosmic ray composition
 - UHE particle interactions / propagation

- Highest energy particles known in the Universe
- Composition unknown
- Sources + acceleration mechanism unknown
 - Astrophysical acceleration or decay of exotic particles? More later...
 - Cutoff in spectrum or not?
 - Expected from interactions with CMB (GZK effect)

Pierre Auger Observatory

- Hybrid air shower detector
- Southern site (3000 km²) in Argentina completed 2008
- Northern site (21000 km²) planned for Colorado, U.S.A.

Hybrid Detection

Hybrid observation: energy cross-calibration (~20%), better angular resolution (~0.5°)

 \dots but FD duty cycle is ~10%

Latest Results: UHECR Energy Spectrum

- 2008: Continuation of power law rejected at 6σ (confirms HiRes)
- Suppression energy consistent with GZK onset
- 2009: combined FD + SD spectrum
 - protons with strong source evolution?
 - iron with another component below ankle?
- Difficult to rule out non-GZK causes
 - source cutoff?
 - Lorentz violation? see e.g. Scully & Stecker 2008

Latest Results: Anisotropy

Hague et al. 2009 (ICRC)

Release pending

2007: 27 events above 55 EeV (ovals); correlation with nearby AGN (red crosses)

2009: 58 events above 55 EeV: correlation with original AGN catalog weakens

Isotropy rejected at 99% CL

A posteriori investigations of:

- Centaurus A region
- correlations with other catalog(s)
 e.g. SWIFT-BAT

4.2.2010

Composition

- Slant depth X_{max} (integrated density) of shower maximum in atmosphere
 - energy and composition-dependent
 - higher in atmosphere for heavier nuclei (interact, lose energy sooner)
- Shower-to-shower fluctuations of X_{max}
 - iron showers (~superposition of many single-nucleon showers) have fewer fluctuations

 \mathbf{X}_{\max}

Latest Results: Composition

Both indicate composition getting heavier...

or protons behaving differently than expected? (see e.g. Ulrich et al., arXiv:0906.3075)

Neutrino Detection via Air Showers

"normal" inclined shower: only muons left

neutrino-induced shower: young EM component (broad signals in tanks)

tau decay from Earth-skimming ν_{τ} : dense target, but only one flavor

Photon Fraction Limits

- UHE photons predicted in many "top-down" models
 - super-heavy dark matter
 - topological defects
 - Z-bursts
- Photon-induced showers:
 - develop deeper in atmosphere
 - SD: measure shower front curvature, thickness
 - FD: measure longitudinal profile directly
- Data consistent with only hadrons
 - top-down models disfavored
 - GZK photon flux may be eventually accessible

Enhancements at Auger South

HEAT: High Elevation Auger Telescopes

AERA: Auger Engineering Radio Array

Auger Engineering Radio Array

- AERA: Auger Engineering Radio Array
- Detect air showers via radio pulses (e⁺e⁻ in geomagnetic field)
- 20 km² extension to southern site: 150 stations
- Duty cycle: ~100%; ~5000 events/year
- Start deployment this year!

J. Kelley, Beyond2010

Summary

- Pierre Auger UHECR results:
 - suppression in spectrum observed
 - suggestive anisotropy results... need more statistics
 - neutrino and photon limits: no hints beyond SM yet
 - composition getting heavier?
- Strategy for further research:
 - more data from Auger South
 - searches for exotics: Q-balls, magnetic monopoles, etc.
 - 7x larger array: Auger North
 - expand complementary detection techniques like radio

Thank you!

Czech Republic
France [§]
Germany [§]
Italy
Netherlands [§]
Poland
Portugal
Slovenia
Spain
United Kingdom

Argentina Australia Brazil Bolivia* Mexico USA Vietnam*

*Associate Countries § Radio Working Group

GZK Suppression

- Suppression expected above 50 EeV due to interaction with CMB photons (Greisen-Zatsepin-Kuzmin)
- If spectrum keeps going...
 - Sources unexpectedly close?
 - New physics (e.g. violation of Lorentz invariance)?
 - Situation 4-5 years ago totally unclear

Air Shower Detection

- Water (or ice) Cherenkov tanks
 - detect EM shower front on ground
 - near-100% duty cycle

- Fluorescence telescopes
 - follow Nitrogen fluorescence as shower develops
 - good for calorimetry, measurement of shower maximum (particle ID)
 - duty cycle is $\sim 10\%$

The Neutrino Connection

- Trans-GZK protons lose energy via CMB photopion production
- Also produces UHE neutrinos! $p\gamma \rightarrow n\pi^+ \rightarrow n\mu +
 u_{\mu}$
- Nuclei will tend to photodisintegrate first (reduced flux)
- Measurement of GZK neutrino flux:
 - source spectrum
 - source evolution
 - composition

Anchordoqui et al. 2007

Radio Emission from Air Showers

- Separation, acceleration of e⁺, e⁻ in geomagnetic field
 - secondary: charge excess, moving dipole
- Broadband radio pulse (width ~50 ns)
- Emission is coherent up to 100 MHz
 - RF power scales as $(E_{primary})^2$
- Observed by LOPES, CODALEMA, MAXIMA detectors
 - geomagnetic asymmetry verified
 - larger experiment needed to verify details of emission

Geomagnetic O

 Simplification: geomagnetic origin implies

 $\vec{E} \propto \vec{v} \times \vec{B}$

 Asymmetry confirmed with LOPES, CODALEMA experiments

Composition

- Primary composition by:
 - lateral distribution
 - reconstruction of shower front curvature
- Simulations only at this point: need larger array, more events!

Huege et al. 2008

Expected Event Rates

~5000 events / year with $E > 3 \times 10^{17} \text{ eV}$ ~800 events / year with $E > 1 \times 10^{18} \text{ eV}$

AERA Physics

Radio will open a new window onto cosmic ray physics!