

The Pierre Auger Observatory: Recent Results and Future Plans

John Kelley Radboud Universiteit, Nijmegen

12th Astroparticle Physics Symposium December 4, 2009

Cosmic Ray Spectrum

- Charged particles with steep power law spectrum
- Low flux at high energy: detect via extensive air showers
- "Ankle": transition from galactic to extragalactic sources?
- Composition: protons vs. heavy nuclei?

- Highest energy particles known in the Universe
- Composition unknown
- Sources + acceleration mechanism unknown
 - presumably extragalactic
 - AGN? GRBs?
 - top-down models now disfavored
- Cutoff in spectrum or not?

GZK Suppression

- Suppression expected above 50 EeV due to interaction with CMB photons (Greisen-Zatsepin-Kuzmin)
- If spectrum keeps going...
 - Sources unexpectedly close?
 - New physics (e.g. violation of Lorentz invariance)?
 - Situation 4-5 years ago totally unclear

Pierre Auger Observatory

- Hybrid air shower detector
- Southern site (3000 km²) in Argentina completed 2008
- Northern site (21000 km²) planned for Colorado, U.S.A.

Hybrid Detection

Hybrid observation: energy cross-calibration, better angular resolution

 \dots but FD duty cycle is ~10%

Latest Results: UHECR Energy Spectrum

- 2008: Continuation of power law rejected at 6σ (confirms HiRes)
- Suppression energy consistent with GZK onset
- 2009: combined FD + SD spectrum
 - protons with strong source evolution?
 - iron with another component below ankle?

UHECR Anisotropy

• Extragalactic protons above 50 EeV or so should point back to sources (within a few degrees)

$$\theta(E,Z) \approx \left(\frac{L}{L_{\rm coh}}\right)^{0.5} \alpha \approx 0.8^{\circ} \left(\frac{10^{20} \,\mathrm{eV}}{E}\right) \left(\frac{L}{10 \,\mathrm{Mpc}}\right)^{0.5} \left(\frac{L_{\rm coh}}{1 \,\mathrm{Mpc}}\right)^{0.5} \left(\frac{B}{1 \,\mathrm{nG}}\right) Z,$$

Hooper et al. 2008

- Pre-Auger: claims of excess from galactic center, BL-Lacs, etc.
- Anisotropy with low statistics is a tricky business

Anisotropy, cont.

2007: 27 events above 55 EeV (ovals); correlation with nearby AGN (red crosses) with chance P ~ 2×10^{-3}

lsotropy rejected at ~99% confidence level

Separate analyses: No correlation found with galactic center or BL-Lacs 4.12.2009 J. Kelley, APP Symposium

Latest Results: Anisotropy

2009: 58 events above 55 EeV

Hague et al. 2009 (ICRC)

Release pending

Correlation with original AGN catalog weakens (P value ~ 6×10^{-3})

lsotropy rejected at about same CL (99.4%)

A posteriori investigations of:

- Centaurus A region
- correlations with other catalog(s)
 e.g. SWIFT-BAT

New prescriptions will allow tests of significance

Composition

- Slant depth X_{max} (integrated density) of shower maximum in atmosphere
 - energy and composition-dependent
 - higher in atmosphere for heavier nuclei (interact, lose energy sooner)
- Shower-to-shower fluctuations of X_{max}
 - iron showers (~superposition of 56 proton showers of 1/56 energy) have fewer fluctuations

 \mathbf{X}_{\max}

Latest Results: Composition

Both indicate composition getting heavier... or protons behaving very differently than expected

Bellido et al. 2009 (ICRC)

The Neutrino Connection

- Trans-GZK protons lose energy via CMB photopion production
- Also produces UHE neutrinos! $p\gamma \rightarrow n\pi^+ \rightarrow n\mu +
 u_{\mu}$
- Nuclei will tend to photodisintegrate first (reduced flux)
- Measurement of GZK neutrino flux:
 - source spectrum
 - source evolution
 - composition

Neutrino Detection via Air Showers

"normal" inclined shower: only muons left

neutrino-induced shower: young EM component (broad signals in tanks)

tau decay from Earth-skimming ν_{τ} : dense target, but only one flavor

Enhancements at Auger South

HEAT: High Elevation Auger Telescopes

AERA: Auger Engineering Radio Array

Radio Emission from Air Showers

- Separation, acceleration of e⁺, e⁻ in geomagnetic field
 - secondary: charge excess, moving dipole
- Broadband radio pulse (width ~50 ns)
- Emission is coherent up to 100 MHz
 - RF power scales as $(E_{primary})^2$
- Observed by LOPES, CODALEMA, MAXIMA detectors
 - geomagnetic asymmetry verified
 - larger experiment needed to verify details of emission

Auger Engineering Radio Array

- AERA: Auger Engineering Radio Array
- 20 km² extension to southern site (at infill array)
- Phase I: 25 stations, early 2010 (total: 150)
- Duty cycle: ~100%

Radio Detection Station

- Autonomous, solar power
- LPDA antenna, 30-80 MHz bandpass
- Local digitizer and trigger
- Multi-station coincidence via central DAQ

Digital Electronics (NIKHEF and RU)

XScale-based PC board (running Linux)

serial interface

I. Kelley, APP Symposium

Expected Event Rates

~5000 events / year with $E > 3 \times 10^{17} \text{ eV}$ ~800 events / year with $E > 1 \times 10^{18} \text{ eV}$

AERA Science Program

- Detailed calibration of radio signal
 - self-triggering
 - coincidences with other Auger components
 - full understanding of all RF emission mechanisms
- Resolution of radio technique
 - energy and direction
 - composition via shower maximum, lateral distribution
- Independent cosmic ray and neutrino physics
 - composition of critical ankle region
 - radio signals from inclined showers: neutrino sensitivity

- Pierre Auger UHECR results (and remaining questions)
 - suppression in spectrum (GZK or intrinsic to source?)
 - suggestive anisotropy results (really AGN? role of Cen A?)
 - composition getting heavier (or new physics?)
 - competitive neutrino limits (level of cosmogenic flux?)
- Multi-pronged strategy for further research:
 - more data from Auger South
 - 7x larger array: Auger North
 - expand complementary detection techniques like radio
 - measure cosmogenic neutrino flux

Thank you!

Czech Republic
France [§]
Germany [§]
Italy
Netherlands [§]
Poland
Portugal
Slovenia
Spain
United Kingdom

Argentina Australia Brazil Bolivia^{*} Mexico USA

Vietnam*

*Associate Countries § Radio Working Group

KVI Groningen

A. M. van den Berg E. D. Fraenkel S. Harmsma O. Scholten K. de Vries

<u>NIKHEF</u>

J. Petrovic C.Timmermans (+RU)

<u>RU Nijmegen</u>

- A. Aminaei J. Coppens H. Falcke A. Fitzner S. Grebe J. R. Hörandel A. Horneffer S. Jiraskova S. J. de Jong J. L. Kelley
 - H. Schoorlemmer

Air Shower Detection

- Water (or ice) Cherenkov tanks
 - detect EM shower front on ground
 - near-100% duty cycle

- Fluorescence telescopes
 - follow Nitrogen fluorescence as shower develops
 - good for calorimetry, measurement of shower maximum (particle ID)
 - duty cycle is ~10%

4.12.2009

Geomagnetic O

Ardouin et al. 2009

 Simplification: geomagnetic origin implies

 $\vec{E} \propto \vec{v} \times \vec{B}$

 Asymmetry confirmed with LOPES, CODALEMA experiments

Composition

- Primary composition by:
 - lateral distribution
 - reconstruction of shower front curvature
- Simulations only at this point: need larger array, more events!

Huege et al. 2008

Self-Triggering

- Technological challenge: impulsive RFI
- Current algorithms focus on time-domain analysis
- New techniques under development:
 - power detection circuit
 - periodic veto (e.g. 50 Hz)
 - wavelet filtering

Calibration Techniques (I)

Calibration Techniques (II)

J. Kelley, APP Symposium

