Sensitivity to New Physics using Atmospheric Neutrinos and AMANDA-II

> John Kelley UW-Madison

Penn State Collaboration Meeting State College, PA June 2006

New Physics Effects

- Violation of Lorentz invariance (VLI) in string theory or loop quantum gravity*
- Violations of the equivalence principle (different gravitational coupling)[†]
- Interaction of particles with spaceullettime foam \Rightarrow quantum decoherence of pure states[‡]

* see e.g. Carroll et al., PRL 87 14 (2001), Colladay and Kostelecký, PRD 58 116002 (1998)

[†] see e.g. Gasperini, PRD **39** 3606 (1989)
[‡] see e.g. Hawking, Commun. Math. Phys. **87** (1982), Ellis *et al.*, Nucl. Phys. B241 (1984)

VLI Oscillations

$$\begin{split} P_{\nu_{\mu} \to \nu_{\mu}} &= 1 - P_{\nu_{\mu} \to \nu_{\tau}} = 1 - \sin^2 2\Theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E} \, \mathcal{R}\right) \\ \sin^2 2\Theta &= \frac{1}{\mathcal{R}^2} \left(\sin^2 2\theta + R_n^2 \sin^2 2\xi_n + 2R_n \sin 2\theta \sin 2\xi_n \cos \eta_n \right) \,, \\ \mathcal{R} &= \sqrt{1 + R_n^2 + 2R_n} \left(\cos 2\theta \cos 2\xi_n + \sin 2\theta \sin 2\xi_n \cos \eta_n \right) \,, \\ R_n &= \sigma_n^+ \frac{\Delta \delta_n E^n}{2} \, \frac{4E}{\Delta m^2} \,, \end{split}$$
Gonzalez-Garcia, Halzen, and Maltoni, hep-ph/0502223

- For atmospheric v, conventional oscillations turn off above $\sim 50 \text{ GeV} (L/E \text{ dependence})$
- VLI oscillations turn on at high energy (*L E* dependence), depending on size of $\delta c/c$, and distort the zenith angle / energy spectrum

ν_{μ} Survival Probability (Violation of Lorentz Invariance)

v_{μ} Survival Probability (Quantum Decoherence)

$$P[\nu_{\mu} \to \nu_{\mu}] = \frac{1}{2} + e^{-(\alpha + a)L} \cos\left(2\frac{\Delta m^{2}L}{4E}\right) \qquad (\sin^{2}(2\theta) = 1, \ b = \beta = d = \delta = 0)$$

$$κ model, a = α = 4 × 10^{-32} (E2 / 2)$$

Data Analysis

Look for distortions in N_{ch} vs. zenith angle

Binned Likelihood Test

Feldman-Cousins Recipe

- For each point in parameter space $\{\theta_i\}$, sample many times from parent Monte Carlo distribution (MC "experiments")
- For each MC experiment, calculate likelihood ratio: $\Delta L = LLH$ at parent $\{\theta_i\}$ - minimum LLH at some $\{\theta_{i,best}\}$
- For each point $\{\theta_i\}$, find ΔL_{crit} at which, say, 90% of the MC experiments have a lower ΔL (FC ordering principle)
- Once you have the data, compare ΔL_{data} to ΔL_{crit} at each point to determine exclusion region
- Primary advantage over χ^2 global scan technique: proper coverage

Feldman & Cousins, PRD **57** 7 (1998)

VLI: Sensitivity using only N_{ch}

Decoherence Sensitivity (Using N_{ch} , κ model)

Decoherence Sensitivity

(E² energy dependence)

SuperK limit (90%)[‡]: 0.9 × 10⁻²⁷ GeV⁻¹

Almost 4 orders of magnitude improvement!

[‡] Lisi, Marrone, and Montanino, PRL **85** 6 (2000)

- 2005 data and Monte Carlo (with Photonics) processing underway
- Improve quality cuts for atmospheric sample leverage work done at Mainz
- Extend analysis capabilities
 - better energy estimator?
 - full systematic error treatment
 - multiple dimensions (observable and parameter space)
 - optimize binning

Extra Slides

Systematic Errors

- Atmospheric production uncertainties
- Detector effects (OM sensitivity)
- Ice Properties

Can be treated as nuisance parameters: minimize LLH with respect to them

Or, can simulate as fluctuations in MC experiments

Normalization is already included! (free parameter — could possibly constrain)