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Abstract

I investigate some questions resulting from a simple definition of a straight line in an

arbitrary metric space. The triangle inequality is used as a “line equality,” and defines

the line. I try to reproduce some of the definitions for simple geometrical objects and

look at the differences from the Euclidian.
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1 Introduction

A traditional metric space is defined by a set and a mapping ρ from pairs of elements in that
set to the reals such that:

1. ρ(x, y) ≥ 0

2. ρ(x, y) = ρ(y, x)

3. ρ(x, y) = 0 ⇐⇒ x ≡ y

4. ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

It is desirable, since spacetime is not a traditional metric space, to extend this study into
modified metric spaces which do not satisfy the first criterion. First things first, though–
traditional metric spaces are easier to understand.

Presumably there are sets for which no possible metric space can have some particular
property, and it may be of interest to classify these sets on such a basis, but that must wait
until we have a better handle on which properties are likely to be interesting.

Some of the properties the metric space can have are those of being open or closed or
neither, of being bounded, of being compact, and so on. Note that different metrics defined
over the same space may result in metric spaces with different properties.

1.1 Examples of Metric Spaces

I believe it is important to have some examples available to hand on which one may test
various hypotheses and get a feeling for the territory.

1. The simplest metric space is the trivial metric, in which ρ(x, x) = 0 and ρ(x, y) = 1
when x 6≡ y.

2. Two more simple spaces are R2 with the metric ρ(x, y) =
√

(x1 − y1)2 + (x2 − y2)2:

(the ‘as the crow flies’ metric), and

3. R2 with the metric ρ(x, y) =| (x1 − y1) | + | (x2 − y2) |: (the ‘city streets’ (or taxi-cab
or L1) metric).

4. R3 with a hybrid metric ρ(x, y) =
√

(x3 − y3)2 + (| (x1 − y1) | + | (x2 − y2) |)2) is in-
teresting. Call it a ‘city crow’ metric–like a bird constrained to fly between skyscrapers.

5. Another is the distance between two points on the unit sphere. If two points have polar
coordinates θ1, φ1 and θ2, φ2 then in the ‘great circle’ metric the distance between them
is given by sin(θ1) sin(θ2) cos(φ1 − φ2) − cos(θ1) cos(θ2).
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6. Consider R2 with the point (0, 0) missing. Let it have coordinates (r, θ), and define the
metric such that for points x1 and x2, ρ(x1, x2) = min(

∫ x2

x1
ds/r), where the integral is

taken over some path from x1 to x2. The result (call it the ‘potential well metric’) has
several cases. If x1 = (r1, θ) and x2 = (r2, θ) (the same θ), then ρ(x1, x2) = | ln(r1/r2)|.
If the radii are the same, then ρ(x1, x2) = |θ2 − θ1|. Otherwise

ρ(x1, x2) =
√

((θ2 − θ1)2 + (ln(r2/r1)2)

7. Consider the familiar space consisting of two copies of R2, an ‘upper’ and a ‘lower’,
which are joined along the negative x-axis such that the upper -y joins the lower +y,
and the lower -y joins the upper +y. This space may be parameterized by r and θ
where θ runs from 0 to 4π. The distance I select is the obvious extension of the ‘crow
flies’ distance: For two points (r1, θ1) and (r2, θ2), if |θ1 − θ2| < π then the distance is

familiar:
√

r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2), but if |θ1 − θ2| > π then the shortest distance
between the two points is to (0, 0) and back, and so is r1 + r2.

8. Consider the metric space (call it Dis4) over 4 points {A, B, C, D}, with distances
between them defined by:

A B C D
A 0 2/5 1/3 1
B 2/5 0 1/4 3/5
C 1/3 1/4 0 2/3
D 1 3/5 2/3 0

(1)

9. For a nice pathological case, consider the real interval [0, 2], with ρ(a, b) =| a − b | if a
and b are rational, and = 1 if either of a or b is not rational. Call this Rat2.

2 Line Segments and Lines

In a familiar line segment, the distance from an end-point to a point in the middle plus
the distance from that point to the other end-point is equal to the distance between the
end-points. This seems to extend very naturally to traditional metric spaces, namely:

Sa,b ≡ {x | ρ(a, x) + ρ(x, b) = ρ(a, b)} (2)

It is simple to extend this definition to an entire line defined by two points:

La,b ≡ {x | ρ(a, x) + ρ(x, b) + ρ(a, b) = 2 ∗ max(ρ(a, b), ρ(a, x), ρ(x, b))} (3)

2.1 Specific Examples of Sa,b

Obviously if a ≡ b then Sa,a = {a} and La,a is the entire set. It is also immediate that the
trivial metric does not have any interesting line segments (Sa,b = {a, b}).

3



-

6

Sa,b

a

b

-

6

La,b

La,b

La,b

. .
.

b

.
.
.

a

Figure 1: Sa,b and La,b in taxicab metric

The ‘as the crow flies’ metric behaves just as expected, but in the ‘city streets’ metric
a line segment is, in general, a rectangle with opposite corners at the points a and b, and
thus has what one might term ‘width’ in general. While it is tempting to think of width as
the interior of the line segment (and indeed the ‘city streets’ metric line segments usually do
have an interior), in general this isn’t possible, as may be seen from the ‘city crow’ metric.
A line in the ‘city streets’ metric consists of the line segment (usually looks like a rectangle)
plus the quadrants tangent to the points a and b and to Sa,b, as shown in Figure 1.

The ‘great circle’ metric has line segments which are great circle arcs joining the points
a and b, unless these points are exactly opposite each other on the sphere, in which case the
entire surface of the sphere is the line segment. A line consists of this arc plus an arc from
b to a point exactly opposite from a on the sphere, and from a to a point exactly opposite
to b on the sphere.

In the ‘potential well’ metric space, if the two points have the same θ coordinate, the line
segment is a section of radius connecting them. If they have the same radius, the segment is
the arc connecting them of the circle they lie on–unless they are exactly opposite in θ, in which
case the entire circle is the line segment. If they are neither, then there is a simple equation
linking the radius and θ of the arc connecting them: θ = ((θ2−θ1)/ ln(r2/r1)) ln(r/r1). Note
again that if the θ’s are exactly opposite to each other, there are two arcs, one to each side
of the point (0, 0), which are mirror images of each other.

In general, if the metric is defined so that the ‘distance’ between two points a and b is
the minimum of the weighted integral over the path between them (a minimum path), then
that path is part of the Sa,b, by construction.

2.2 Sa,b is Sometimes Closed

One obvious question is: Is Sa,b closed, open, or neither?
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The usual line segment on the ‘crow flies’ metric is, of course, closed. The segment S0,1

on Rat2 consists of all rational numbers in the range [0, 1], and is not closed.

Consider the complement of Sa,b, and a point Y within that complement. ρ(a, Y ) +
ρ(Y, b) = ǫ + ρ(a, b) where ǫ > 0, since Y is not in Sa,b. Now take a point c within Sa,b. We
have ρ(a, Y ) + ρ(Y, b) = ǫ + ρ(a, c) + ρ(c, b). But ρ(a, Y ) ≤ ρ(a, c) + ρ(c, Y ) and ρ(Y, b) ≤
ρ(c, b) + ρ(c, Y ), so substituting in the above gives ρ(a, c) + ρ(c, Y ) + ρ(c, b) + ρ(c, Y ) ≥
ǫ + ρ(a, c) + ρ(c, b), which simplifies to ρ(c, Y ) ≥ ǫ/2. Thus for any point c in Sa,b and any
point Y not in it, there exists a minimum separation between them. A circle centered on Y
with a radius less than that minimum separation will contain no points of Sa,b, and thus be
a subset of its complement.

If that circle contains only a finite number of points, it is closed, and whether Sa,b is
open depends on whether it also has only a finite number of points and whether there is an
infinite number of points Y .

If, however, the circle is open, then a union of them will also be open. Thus the comple-
ment of Sa,b is open, and so Sa,b will be closed.

2.3 Sa,b is bounded

This is easily seen. Let w = ρ(a, b); then defining the circle to be

Cq:r ≡ {x | ρ(q, x) < r} (4)

clearly each x ∈ Sa,b satisfies x ∈ Ca:w+ǫ, and thus Sa,b is bounded. We needn’t restrict
ourselves to the endpoints, of course. For each x, y ∈ Sa,b, we have

ρ(x, y) ≤ ρ(x, b) + ρ(y, b) ≤ 2 ∗ ρ(a, b)

and the distance between any two points within Sa,b is less than or equal to 2 ∗w = 2ρ(a, b),
and Sa,b ⊂ Cx,2∗w+ǫ.

2.4 Partitionable and Well-ordered

If a line segment has the property that for each point c ∈ Sa,b, Sa,b = Sa,c + Sc,b then that
line segment is partitionable . This is a fairly strong requirement. Segments consisting of
only three points are trivially partitionable .

If for each pair of points c and d within a line segment Sa,b, ρ(a, c) = ρ(a, d) ⇐⇒ c = d
then the line segment is ‘well-ordered.’ If this is true for all line segments in the space,
then the metric space is ‘well-ordered.’ It can happen that a line segment will have multiple
branches, each of which, considered separately, is well-ordered; but the whole segment is
not. Line segments of the ‘taxi-cab’ are generally not well-ordered. If a segment is not
partitionable , then for some x, y ∈ Sa,b, it must be true that y 6∈ Sa,x ∪ Sb,x. Suppose,
however, that for this x, y, x ∈ Sa,y. Then ρ(a, x) + ρ(x, y) = ρ(a, y). Adding ρ(y, b) to both
sides and using y ∈ Sa,b gives ρ(a, x) + ρ(x, y) + ρ(y, b) = ρ(a, b) = ρ(a, x) + ρ(x, b), since
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x ∈ Sa,b. From this we find that ρ(x, y) + ρ(y, b) = ρ(x, b), showing that y ∈ Sx,b, contrary
to our supposition. Hence if x, y ∈ Sa,b and y 6∈ Sa,x ∪ Sx,b, then x 6∈ Sa,y ∪ Sy,b.

‘Well-ordered’ is an analog of the usual definition of a line segment, which is the set of
points (1 − t)x + ty : 0 ≤ t ≤ 1. At first glance partitionable and ‘well-ordered’ seem to be
closely related, and in fact partitionable implies ‘well-ordered.’ Given x, y ∈ Sa,b, we must
have y ∈ Sa,x or y ∈ Sx,b if Sa,b is partitionable . Without loss of generality assume the first
case, ρ(a, y) + ρ(y, x) = ρ(a, x). If x 6= y we have ρ(y, x) > 0 and thus ρ(a, y) 6= ρ(a, x). If
x = y ρ(a, y) = ρ(a, x) of course. On the other hand, if ρ(a, y) = ρ(a, x), then we have to
have ρ(x, y) = 0, which implies that x = y. So partitionable implies ‘well-ordered.’

The metric Dis4 has a non-trivial line segment in SA,D, which consists of the entire set.
This segment is clearly well-ordered. It is not partitionable . Thus well-ordered does not
imply partitionable .

What else is required of a well-ordered segment before we can be assured that it is par-
titionable ? Suppose it is not partitionable. Then there exists some x, y ∈ Sa,b such that
y 6∈ Sa,x ∪ Sx,b. Since line segments are WARNING NOT ALWAYS closed then we can
find some ǫ > 0 such that Cx,ǫ ∩ Sa,x == Cx,ǫ ∩ Sx,b. Without loss of generality take
ρ(a, y) > ρ(a, x).

∀k ∈ Cx,ǫ ρ(a, y) + ǫ > ρ(a, k) > ρ(a, y) − ǫ

If the segment is well-ordered, then 6 ∃q ∈ Sa,x | ρ(a, q) = ρ(a, k). (This relies on Sa,x ⊂ Sa,b,
proven below.) This leaves a gap–it is continuous?

We can use a weaker condition than partitionable . Call a line segment ‘locally parti-
tionable ’ if, for all but a finite number of points, we have

x ∈ Sa,b, ∃ǫ > 0 | (Cx,ǫ ∩ Sa,x) + (Cx,ǫ ∩ Sb,x) = Cx,ǫ ∩ Sa,b

A line segment can bifurcate, but so long as there are only a finite number of these bifurcation
points it can be locally partitionable . That Sa,x ⊂ Sa,b if x ∈ Sa,b I prove in section 2.5.
Along with this we can define the property of being ‘locally well-ordered’ in a natural way.

These various definitions are meant to help isolate what we mean when we talk about
the ‘width’ of a line, and what makes a line thin.

2.5 Does Sa,b Contain its Sub-segments?

Suppose that there is some point q in Sa,b. Is it true that Sa,q ⊂ Sa,b?

Suppose ∃y ∈ Sa,q. Then ρ(a, y) + ρ(y, q) = ρ(a, q), and since ρ(a, q) + ρ(q, b) = ρ(a, b),
then ρ(a, y) + ρ(y, q) + ρ(q, b) = ρ(a, b). Since we have, by definition of a metric space,
ρ(y, q) + ρ(q, b) ≥ ρ(y, b), we get

ρ(a, b) = ρ(a, y) + ρ(y, q) + ρ(q, b) ≥ ρ(a, y) + ρ(y, b) ≥ ρ(a, b)

Since we are bounded above and below by ρ(a, b) the ≥ must be =, and we see that ρ(a, y)+
ρ(y, b) = ρ(a, b), and hence y ∈ Sa,b.

Thus Sa,q ⊂ Sa,b if q ∈ Sa,b.
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In general, however, does a line segment contain its sub-segments? The answer is no, but
it may be of interest to determine when it does and when it does not.

If for some x, y in Sa,b, Sx,y 6⊂ Sa,b, then clearly x is not in Sa,y or Sb,y, and likewise y
is not in Sa,x or Sb,x, or else by the result above Sx,y ⊂ Sa,y ⊂ Sa,b (for example). Thus if
Sx,y 6⊂ Sa,b, then Sa,b 6= Sa,x ∪ Sx,b, since we have a point y which is not in either of the two
sub-segments. Sa,b is not partitionable .

Notice that the converse is not true: Sa,b not partitionable does NOT imply that there
exists {x, y} ∈ Sa,b with Sx,y 6⊂ Sa,b. The ‘city streets’ metric space provides a simple
counter-example: each line segment contains all segments createable from points within it,
but it is not a simple sum of two sub-segments Sa,x and Sx,b.

A line need not contain all line segments generated by the points within it. This is obvious
from considering the ‘great circle’ metric, where a line is (in general) an arc extending more
than half-way round the sphere. Thus there are two points {x, y} in La,b which are exactly
opposite to each other, and Sx,y is the entire surface of the sphere–which is NOT contained
in La,b in general.

The ‘potential well’ metric space offers an example of a space in which not all line
segments are partitionable , and in fact in which there exist line segments which do not
contain line segments generated from points within themselves. It is easy to see that most
of the line segment arcs in this space are partitionable , but when the points are at different
radii and are opposite each other in θ, the line segment consists of two non-circular arcs
joining the points. Clearly the Sa,c and Sc,b formed from using a point in one of these arcs
will not generate any points in the other arc, and this Sa,b is not partitionable . In addition,
if you take a point from one of the arcs and a point from the other, the line segment formed
between them will, far from being a subset of Sa,b, only intersect Sa,b in two points. This is
clearly not a convex set, though most of the line segments in this metric space are convex.

2.6 Nearest Point in a Line Segment

Given a line segment Sa,b (not equivalent to the entire space) and a point c not in it, then
define the nearest points as

N(Sa,b, c) = {x ∈ Sa,b | ρ(c, x) = d | d = min(ρ(c, y)) y ∈ Sa,b}

NOT ALWAYS TRUE Since Sa,b is closed, there is at least one point in N .

There can be more than one point in N . For example take the ‘great circle’ metric space.
Consider one Sa,b which is an arc on the ‘equator’ and c on a ‘pole’–In this case N(Sa,b, c) is
the entire Sa,b. The ‘great circle’ metric space was not devised to be pathological.

2.7 Intersection of Line Segments

Assume there are points a, b, c, and d such that c, d 6∈ Sa,b and a, b 6∈ Sc,d. This will not
always be possible, of course (as when a and b are on opposite poles of a sphere, with the
usual metric on a sphere). Call their intersection

Ia,b|c,d ≡ Sa,b ∩ Sc,d
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Often I will be ∅, and there are metric spaces in which it is always ∅ (using the trivial metric,
for example), but consider for now the instances when it is not empty, and also not the entire
space (as can happen in 1-dimensional spaces).

WARNING Clearly I is closed. Given any x, y ∈ Ia,b|c,d, then Sx,y ⊂ Ia,b|c,d, since Sx,y

must be a subset of both of the original line segments.

Is Ia,b|c,d = Sr,s for some r and s? Not always: there is a counterexample in the ‘potential
well metric.’ Points exactly opposite each other in angle but at different radii have 2-
branched line segments, which can have two intersection points with the segment joining a
pair of points at the same radius. These don’t form even a trivial line segment.

So instead of Ia,b|c,d, consider the connected subsets of it. Label these (if there are
countably many) with i and call them J i

a,b|c,d.

Define a ‘diameter.’ Let D = max(ρ(x, y)) where x, y ∈ J i
a,b|c,d. WARNING about closure

Since J is closed, max is the same as sup, so ∃m, n ∈ J i
a,b|c,d which have ρ(m, n) = D. If

D = 0, then m = n and there is only one point in J i
a,b|c,d, which one could then call Sm,m,

and the conjecture is true trivially.

If D > 0, then there are one or more pairs of distinct points with ρ(m, n) = D. Let M
be the set of all such pairs;

M ≡ {(m, n) | m, n ∈ J i
a,b|c,d , ρ(m, n) = max(ρ(x, y)) | x, y ∈ J i

a,b|c,d

Order within a pair does not matter, and we require that each pair only appear once, to
avoid double counting. Obviously our only candidates for the desired r and s are in the pairs
in M .

As of this moment I have not determined the answer to the conjecture above. Perhaps
one may have to classify metric spaces into those for which it is true and those for which
it is not, and into those for which M may have more than one pair and those for which it
never has more than one pair.

Assume for the moment that the union of the two lines is not the same as the entire
space. Given a point i in the intersection, can we create a circle Ci:R ≡ {x | ρ(x, i) = R}
which contains points not in the intersection of the two lines? Assume we can, for R greater
than some Rmin (though the cases in which one cannot might have interesting pathologies).
Now consider U ≡ Ci:R ∩ Sa,b. Into how many continuous clumps is it divided?

If there are 0, 1 or more than 2 convex parts I’m not ready to deal with the situation
right now. If there are 2, then let’s proceed.

U ≡ U1∪U2 where U1 and U2 are the two convex parts. Let p1 ∈ U1∩J i
a,b|c,d and p2 ∈ U2∩

J i
a,b|c,d. If either of these two sets is empty, we again have a curious situation which I’ll ignore

for the moment. Now find a point Q (if it exists) in Sc,d such that Q 6∈ Sa,b and ρ(Q, i) > R.

Let W1 = min(ρ(p1, Q)), p1 ∈ U1 ∩ J i
a,b|c,d, and W2 be the corresponding minimum for p2.

Use these to define f(Q, R) ≡ W 2
1 /(W 2

1 + W 2
2 ). Now define fL(R) = min(f(Q, R)) and

fH(R) = max(f(Q, R)). If these converge such that limR→Rmin
fH(R) − fL(R) = 0, then we

can define a unique angle of intersection, which is given by sin(θ/2) = limR→Rmin
fH(R). It

may be zero; perhaps in some metrics even always zero. For the standard Euclidean metric
the definition returns the usual value for θ.
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2.8 Dimensions

Dimensions aren’t always easy to define, but I at least need to have something that allows me
to exclude trivial cases. There are two obvious definitions of a 1-dimensional space: There
exist two points a and b for which La,b is the entire space; or alternatively, for all distinct
points a and b, La,b is the entire space. It isn’t clear which is most useful yet, and I have not
taken up such fine points as “except for a finite number of points” or “except for a finite set
of disconnected regions.”

2.9 Thick Line Segments

As noted before, under some metrics it is possible to find a point q in some line segments
and a radius r > 0 such that the circle Cq:r is a subset of the line segment. Let R be the
maximum possible radius for some line segment, with R > 0. Since the distance between
any two points in the line segment Sa,b must be less than or equal to 2ρ(a, b), we have
R ≤ 2ρ(a, b). However, with the ‘city crow’ metric, although you see that Sa,b can have a
kind of width, just like the ‘taxi-cab’ metric, it is never true that Cq:r is a subset of the line
segment if r > 0.

If Sa,b contains all its Sx,y where x and y are in Sa,b, then ρ(x, y) ≤ ρ(a, b). At the moment
I do not know if I can get tighter bounds in the general case or not.

3 Planes

There are four obvious definitions of a ‘plane’ defined by 3 points. In the usual Euclidean
space these are equivalent, but not in general.

First, one assumes that the three points a, b, and c are not in the same line. We can try
to use a line defined by two of the points and a third point not on the line, as in

P s
La,b,c

≡ {y | y ∈ Lc,r; r ∈ La,b} (5)

Sometimes one will have P s
La,b,c

≡ P s
La,c,b

≡ P s
Lb,c,a, but this need not be true in general.

A more symmetric definition is better:

P 2

a,b,c ≡ {y | y ∈ LX,r; X ∈ {a, b, c}, r ∈ La,b ∪ Lb,c ∪ La,c} (6)

In Euclidean geometry one can get away with an even smaller definition; though this
might produce amusing unexpected gaps in the coverage:

P 1

a,b,c ≡ {y | y ∈ LX,r; X ∈ {a, b, c}, r ∈ Sa,b ∪ Sb,c ∪ Sa,c} (7)

Alternatively we can use a union of all lines generated from all points in the lines generated
by the three points, as in

P 4

a,b,c ≡ {y | y ∈ Ls,r; s, r ∈ La,b ∪ Lb,c ∪ La,c} (8)
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Once again, in the Euclidean metric we can get away with a smaller definition involving
lines between points on the line segments generated by the three points.

P 3

a,b,c ≡ {y | y ∈ Ls,r; s, r ∈ Sa,b ∪ Sb,c ∪ Sa,c} (9)

We can also define a plane-like object by selecting one of the definitions of a ‘plane’ and
generating all lines formed from points within that object; continuing the iteration until we
get convergence (if that ever happens!).

An obvious first question is: ‘Do these result in the same sets?’ The answer is no. A
simple counter-example is the ‘great circle’ metric. Given 3 points, the plane defined by
P 1 consists, in general, of the area contained within 6 arcs defined by the points and lines
between them–it is NOT the entire sphere, in general. However, P 4, consisting of all lines
joining points in any of the lines, must consist of the entire sphere, since any line must
include at least two points opposite each other on the sphere, and any line joining two points
opposite each other comprises the entire sphere. Thus these are NOT equivalent definitions.

We have (by construction) that P s ⊂ P 2 for any order of (a, b, c); and it is obvious that
P 1 ⊂ P 2 and P 3 ⊂ P 4. It is not hard to see that P 1 ⊂ P 3 and P 2 ⊂ P 4, and if we iterate
P 1 or P 3 as described above, that P 2 ⊂ P 1

iter and P 4 ⊂ P 3
iter.

A second question is: ‘Does a line partition a plane defined by that line and another
point?’ This depends on how one defines partition, apparently. In the case of the ‘great
circle’ metric two points on ‘opposite’ sides of the line in a plane (P 1) defined by another
point cannot be joined by a great circle arc which does not intersect the line, but can be
joined by a series of arcs which don’t intersect it. Of couse, P 1 is a deliberately minimal
definition.

This needs more work.

4 Inside/Outside

Consider a ‘triangle’ defined by 3 points, none of which is in a line defined by the other two.

Ta,b,c ≡ {∪Si,j | i, j ∈ {Sa,b ∪ Sb,c ∪ Sa,c}} (10)

Sometimes sweeping out the ‘angles’ from the vertices will be equivalent, but not always:

T 2
a,b,c ≡ {∪Si,j | i ∈ {a, b, c}, j ∈ {Sa,b ∪ Sb,c ∪ Sa,c}} (11)

Clearly T 2 is a subset of T by construction. Cases in which it is a strict subset are rather
curious.

If T 2 is a strict subset of T , without loss of generality we can say that a point x ∈ T
which is not in T 2 lies in Sq,r where q ∈ Sa,b and r ∈ Sa,c where r and q are not amoung
a, b, c.

Consider La,x. In a Euclidean triangle it would intersect Sb,c somewhere. Suppose it does,
and select y ∈ La,x∩Sb,c. From the definition ρ(a, x)+ρ(x, y)+ρ(a, y) = 2 max(ρ(a, x), ρ(x, y), ρ(a, y)).
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If the maximum is ρ(a, y), then x ∈ Sa,y which contradicts the assumption that x is not in
T 2. Therefore either the line though x and the ‘vertex’ a does not intersect the opposite line
segment, or either the distance from the ‘vertex’ a to x or the distance from the ‘intersection’
y to x is larger than the distance from the ‘vertex’ to the ‘intersection,’ which is notably
different from the Euclidean case, and makes understanding what is ‘inside’ and what is
‘outside’ a little complex.

What constitutes the inside and what the outside of the triangle? There may in fact
be nothing ‘inside’ in any reasonable sense–for example consider the ‘city streets’ metric, in
which the line segments between the three points completely fill the rectangle defined by the
most extreme points. However, suppose we use the definition

Ina,b,c ≡ {∪Si,j | i, j ∈ {Sa,b ∪ Sb,c ∪ Sa,c}} − {Sa,b ∪ Sb,c ∪ Sa,c}

for the inside of this ‘triangle’, with the understanding that it may be empty.

I’d like to know if this definition of a triangle results in a triangle defined by three points
which is a subset of the plane defined by those three points. It is consistent with P 3 and P 4,
but it isn’t clear yet if it works with the other two.

5 Miscellaneous Questions

Given a and b, under what conditions can one find x and y such that Sx,y is La,b? This
is certainly sometimes possible when the space is bounded and closed, as can be seen by
considering the unit disk in R2 with the standard ‘crow flies’ metric. When the space is
unbounded, it is at least sometimes impossible for La,b to be Sx,y.
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