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Abstract

Some finite groups have a linear mapping of the group elements onto the algebra
with the basis of the group elements such that the resulting linear combinations of
group elements retain the group properties. In some cases these mappings are contin-
uous Lie groups. So far I have found a ‘non-compact’ SO(3)xU(1), SO(4)xU(1), and
Sl(2,c)xU(1).

UPDATE: March 2023 After some literature searches, I realized that the trans-
formation in question is an isomorphism of a group algebra onto itself, and a fresh
search found that this is a solved problem: ”The group algebra of a finite group is
symmetrically isomorphic to the direct sum of complete matrix algebras.”

This means, among other things, that the initial question of 40 years ago, namely
”If a finite group can model particle interactions, will symmetries over its algebra
produce SU(3)×SU(2)×U(1)?” Answer: no–at least not for anything reasonably sized.
Not that non-abelian groups were likely to be a useful model for particle interactions
anyway.
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1 Introduction and Physics Motivation

Particles such as the KL we describe as a combination of K0 and anti-K0. Particles such
as the π0 are regarded as linear combinations of quarks and anti-quarks. It has been pro-
posed that the particles we know or infer (leptons and quarks) are similarly composed of
combinations of “preons.”

I examine in this paper some consequences of a simple preon model, and show that certain
continuous symmetries result.

The model I use has seven basic assumptions:

• First suppose that all preon interactions are 3-body interactions. I know of no 4-body
interaction which has been observed, now that beta decay is known to progress through a
series of 3-body interactions. A 4-gluon vertex is hypothesised, but not directly observed.

• Suppose secondly that all particles are created from combinations of these preons. This
condition is not required for the mathematics of the model, but for any possible interpretation
of it.

• Suppose thirdly that we are not for the moment concerned with the particle positions
or momenta, but only with particle type. We now are treating all particle interactions as
being of the form A

⊙

B → C.

• Fourthly suppose that every particle may interact with every other to make a new
particle. This requires that the particles in the model not have any net charge (as in (e+ +
e−)/

√
2 vs (e+ − e−)/

√
2). I include no mechanism for giving the particles mass: all are

assumed massless.

• Suppose fifthly that the interaction we have defined so far is associative: A
⊙

(B
⊙

C) =
(A
⊙

B)
⊙

C. We can argue that associativity is a consequence of some of the conservation
laws, though tighter conditions could be applied. This condition is deliberately loose.

• Suppose sixthly that we have some particle Q which has the property that Q
⊙

A → A.
We do in fact observe interactions with this property, such as an electron absorbing a photon.
Remember that by assumption 3 we are dealing only with particle character or identity, not
momentum.

• Suppose seventhly that for each particle A there is an ‘anti-particle’ A−1 for which
A
⊙

A−1 → Q. We have defined a group structure, which we may take to be finite.

Now I ask: What continuous symmetries exist in this model? This is something of a
reversal of the standard approach which examines representations of a group to find parti-
cles. I am looking at a finite group representing preon interactions and searching for the
observed continuous symmetry. Eigenvectors of such a transformation could be candidates
for identification with observed particles.

The specific question I wish to address is this: Can the observed symmetries (SU(3),
SU(2), etc.) be generated in a natural way from linear transformations over finite groups,
where the structure of the finite group is maintained?

The answer, as I will show, is: Yes, some of them can be generated–perhaps all, I don’t
know. The price is high, however–the finite groups which represent particle interactions
must be non-abelian. This is contrary to observation and intuition, but in one case explored
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in detail the eigenvectors of the transformation which have constant eigenvalues do in fact
commute, and only those eigenvectors whose eigenvalues are functions of the parameters fail
to commute. This suggests that only those particles whose preon contents are subject to
change are those which fail to commute. This remains to be proven or disproven in general,
however.

A second, as yet unanswered, question is: Can one predict which symmetries can be
generated? There is a hint that by examining the group characters one can determine the
order of continuous symmetries, but this hasn’t been fully explored yet.

2 Foundations

The method is to consider the elements of a finite group as the basis of a vector space, and
then study those transformations of the basis elements for which the new bases, considered
as elements of a new finite group themselves, form a group isomorphic to the original. Each
of the new bases is a linear combination (complex coefficients) of the original basis elements
(elements of the group).

Consider a finite group G with elements ci. Number them in some arbitrary order, from
0 to N − 1, where 0 is the label for the identity element and N is the order of the group.
Display the group operation by ci

⊙

cj → ck.

I work with a space in which the elements P are defined as
∑

i pi ci, where pi is a complex
number (it could be some other field, but I haven’t addressed that question), and ci are
the elements of the original finite group. Multiplication by a complex number is naturally
defined by b P as

∑

i(b pi) ci, and the sum of two elements P and Q is
∑

i(pi + qi) ci. There
is also a natural operation between the elements of this space given in terms of the group
operation by P

⊗

Q =
∑

i

∑

j piqj(ci
⊙

cj).

In this space consider a linear transformation of the original group elements, so that we
have a new group G′ with c′i

⊗

c′j → c′k. This is an automorphism over the new space. Let
the array V be defined by c′i = Vi,rcr so we can write

Vi,rcr
⊗

Vj,scs → φkVk,tct (1)

Vi,ts−1cts−1

⊗

Vj,scs → Vij,tct (2)

Vi,ts−1cts−1

⊗

Vj,scs → φijVij,tct (3)

Vi,ts−1 Vj,s = φijVij,t = Vi,r Vj,r−1t (4)

Note that I assume that V is complex. One could restrict it to be real, or use some other
field entirely, but I’ll take the complex case. It turns out that the φij are all identical, and can
be divided out as a completely independent phase (U(1), in other words). In what follows I
will denote the identity by 0, for simplicity and clarity. The top element of a column vector
will correspond to this 0-element. In what follows, if an object has more than one subscript,
these will be separated by commas. If several terms are concatenated in a subscript without
commas, group addition of the specified elements is assumed. First let me demonstrate that
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the φx are identical. Clearly V must not be singular, or the resulting transformed group
would be smaller than the original.

Define fi =
∑

x Vi,x. Then since
∑

r

Vi,rVj,r−1t = Vij,tφij

∑

r,t

Vi,rVj,r−1t = fifj =
∑

t

Vij,tφij = φijfij

When i = 0, we get f0 fj = φj fj. If any fk were 0, all would be, and thus V would be
singular. Since V is non-singular, fj 6= 0, so f0 = φj∀j, thus all the φj are the same, and
will be called simply φ, which is also clearly non-zero.

To continue, restate the equation of f ’s as fi fj = fij φ. Then fi2 = f 2
i /φ. This extends to

fin = fn
i (1/φ)

n−1. Now we know that for each i an element in the group there exists some N
such that iN = 0 (the identity), since this is a finite group. Then fiN = f0 = φ = fN

i (1/φ)N−1,
or, rearranging, fN

i = φN . Thus

fi = φe2iπ
ni

N 0 ≤ ni ≤ N

But notice that the ni are discrete, and this is a continuous transformation. The identity
is obviously a member of the set of transformations starting from the identity, and for the
identity each fi is 1. If we parameterize starting from the identity transform, then each ni

must be 0. Therefore,
∑

x

Vi,x = fi = φ ∀i

Let gi =
∑

x Vx,i. Then
∑

i,r

Vi,r Vj,r−1t =
∑

t

Vij,tφ =
∑

r

gr Vj,r−1t = gtφ

∑

s

Vj,sgs−1 = g0φ ∀j

Let Gs = {gs−1}, a column vector. If 1 is defined as a column vector of ones, then we
may write VG = g0φ1, which may be solved with G = g0φV

−11. Note that V −1 is also a
transformation, and the sum of elements in a row in it is equal to some other φ′, which may
be readily seen to be φ∗. Thus, G = g0φφ

∗1, or G = g01. Thus gi = g0 ∀i.
Ng0 =

∑

i

gi =
∑

i,x

Vx,i =
∑

x,i

Vx,i =
∑

x

fx = Nφ ⇒ g0 = φ

For convenience, let us divide V by φ, so that we can quit writing it out each time. Let
V = V

′

φ. Then
Vi,r Vj,r−1t = V

′

i,r V
′

j,r−1t φ
2 = Vij,tφ = V

′

ij,tφ
2

V
′

i,r V
′

j,r−1t = V
′

ij,t

In what follows I will assume that the φ has been divided out, and that the new equations
(dropping the primes) governing the transformation are

Vi,r Vj,r−1t = Vij,t

∑

i

Vi,j =
∑

j

Vi,j = 1 (5)
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2.1 Infinitesimal Transformations

Now consider infinitesimal transformations away from the identity. Here s = r−1t.

Vi,ts−1Vj,s = Vij,t

Va,b ⇒ δa,b + δVa,b (6)

(δi,ts−1 + δVi,ts−1) (δj,s + δVj,s) = δij,t + δVij,t

δi,ts−1δj,s + δj,sδVi,ts−1 + δi,ts−1δVj,s +O(δ2) = δij,t + δVi,tj−1 + δVj,i−1t = δij,t + δVij,t

resulting in
δVi,tj−1 + δVj,i−1t = δVij,t ,

∑

i

δVi,j =
∑

j

δVi,j = 0 (7)

The above are the fundamental equations governing the transformations of the array. Let
i = j = 0. Then the fundamental equation reduces to 2δV0,t = δV0,t, so

δV0,t = 0 (8)

Let t = j. Then the fundamental equation becomes

δVi,0 + δVj,i−1j = δVij,j (9)

Now for any i 6= 0 we know that there exists some N ≥ 2 such that iN = 0, where 0 is the
identity. Thus we make the following substitutions

j = i ⇒ 2δVi,0 = δVi2,i (10)

j = i2 ⇒ δVi,0 + δVi2,i = δVi3,i2 = 3δVi,0 (11)

j = iN ⇒ NδVi,0 = δViN ,iN−1 = δV0,iN−1 (12)

(13)

But since δV0,x = 0, we must have
δVi,0 = 0 ∀i (14)

The column vector in δV corresponding to this is all zero’s (δ1 = 0 for the (0,0) position),
and the top row is also all zero’s. Remember that I am placing the identity element in
the first position. We formally express V as exp(

∑

cxδVx) where the δVx are independent
infinitesimal transformations away from the initial value. Therefore, since the initial value
of V is the identity, which has zeros off the diagonal element in this row and column, any
product of any δV ’s with the initial value of V must continue to have zero’s in these positions.
Thus all V ’s have V0,0 = 1, and Vx,0 = V0,x = 0.

V =













1 0 . . . 0
0
... V ′

0













(15)
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Therefore, the identity element does not transform.

From the fundamental rule governing the continuous transformations,

δVi,tj−1 + δVj,i−1t = δVij,t

if we let t = 0 we have
δVi,j−1 + δVj,i−1 = 0

or
δVi,q = −δVq−1,i−1 ∀i, q (16)

Now restate the first fundamental equation, substituting t = jq.

δVi,jqj−1 + δVj,i−1jq = δVij,jq

If j commutes with all other elements of the group, then jqj−1 = q, and ij = ji, so

δVi,q + δVj,ji−1q = δVji,jq

Now consider the sequence of equations generated by substituting for i = jI and q = jQ.

δVj2I,j2Q = δVj,ji−1q + δVjI,jQ = δVj,ji−1q + δVI,Q + δVj,ji−1q = 2δVj,ji−1q + δVI,Q

δVj3I,j3Q = 3δVj,ji−1q + δVI,Q

and so on. For some N , jN = 0, and we get

δVjN I,jNQ = NδVj,ji−1q + δVI,Q = δVI,Q

from which we get δVj,ji−1q = 0. Since this is true for arbitrary i and q, we see that
δVj,x = 0∀x. Now since j−1 will also commute, the same reasoning applied to it, and we
have δVj−1,x = 0∀x, which implies δVx−1,j = 0∀x. Thus if j commutes with all other

elements of the group, j is not transformed.

In an abelian group, any j commutes with all other elements, so the above is true for all
j in the group. Thus abelian groups are not continuously transformable. One may
further state that Abelian sub-groups do not “internally” transform: the matrix elements of
the δV array which connect one element in an abelian sub-group with another element in
the subgroup are 0. This is trivial for a subgroup of order 2.

Clearly if this model does correspond to a physical system, it is not an immediately
intuitive one.

2.2 Further Simplifications

Now let us look at diagonal elements. In the fundamental equation of transformation, above,
substitute j = i and t = i2. We then get 2δVi,i = δVi2,i2 . If j = i2, then we find δVi,i +
2δVi2,i2 = δVi3,i3 , and so on. This gives NδVi,i = δViN ,iN , but since for some N , iN = 0, we
must have

δVi,i = 0 ∀i (17)
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In another look at the fundamental equation, set t = j. This results in

δVij,j = δVj,i−1j (18)

Alternatively, if we set ij ≡ q, then we have

δVi,tq−1i + δVi−1q,i−1t = δVq,t (19)

If t = i, then
δVi,iq−1i = δVq,i (20)

Instead of reducing, we can use the inversion derived earlier (δVj,r = −δVj−1,r−1), and find
that −δVi−1qt−1,i−1 + δVi−1q,i−1t = δVq,t. Since i is arbitrary, substitute j for i−1 to find

δVjq,jt − δVjqt−1,j = δVq,t ∀j (21)

These equations are powerful tools, since they say that for any q and t one has N-1 combi-
nations of matrix elements all equal to the single matrix element δVq,t.

2.3 Conjugacy Classes and Eigenvectors

Each element f in the group is a member of some conjugacy class, which is the set F of all
elements in the group such that if r is in F , then there exists some g in the group for which
g r g−1 = f . One interesting question (motivated by looking at a few examples) is ‘How does
the sum of members of a conjugacy class transform?’ The answer, as is shown below, is that
such a sum does remains the same under the differential transformation used so far.

The fundamental equation is

δVi,tj−1 + δVj,i−1t = δVij,t

Substitute for t the quantity j2 s j−1, and sum the s over all members of its particular
conjugacy class, which I’ll call S. The result is:

∑

s∈S

δVi,j2sj−2 +
∑

s∈S

δVj,i−1j2sj−1 =
∑

s∈S

δVij,j2sj−1

Since we are summing over all members of a conjugacy class, we can replace j2sj−2 in the
first term with s, i−1j2sj−1 in the second term with i−1js, and j2sj−1 on the right side with
js. This results in the much simpler

∑

s∈S

δVi,s +
∑

s∈S

δVj,i−1js =
∑

s∈S

δVij,js

Now if we set j = i, we find
2
∑

s∈S

δVi,s =
∑

s∈S

δVi2,is

For j = i2, we get
∑

s∈S

δVi,s +
∑

s∈S

δVi2,is =
∑

s∈S

δVi3,i2s = 3
∑

s∈S

δVi,s
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If n > 0, we have by induction for j = in

∑

s∈S

δVin+1,ins = (n+ 1)
∑

s∈S

δVi,s

For some m, im = 0, so for n = m− 1

∑

s∈S

δVim,im−1s = m
∑

s∈S

δVi,s

But since δV0,x = 0, the left side is 0, and thus

∑

s∈S

δVi,s = 0

These sums of elements in a conjugacy class are thus eigenvectors of the transformation
V , with constant eigenvalue 1. Such sums of elements not only do not transform under V ,
but they commute with any other linear combination of elements of the group.

2.4 Discrete Transforms: Permutations

We can have transformations which are simply permutations of the group elements, as well
as permutations with a sign. So long as these preserve the group structure they are legiti-
mate objects of study here. Some of these permutations may arise naturally from continuous
transformations from the identity, but some do not. Those which do not arise from trans-
formations from the form a finite group themselves, and each member of this set of group-
preserving permutations may serve as the basis for a family of continuous transformations
over the original group.

Clearly elements of a conjugacy class must either map into each other or into elements
of a conjugacy class of the same size. This helps restrict the number of cases to examine.

Let’s returning to our physical model–preons with no well-defined quantum numbers
which are combined to form objects which DO have well-defined quantum numbers. Pre-
sumably the constant eigenvectors of the transformation correspond to real particles, or
things from which real particles could be generated. Since most of the constant eigenvec-
tors are sums of elements (‘preons’) from the same ‘conjugacy class’, it isn’t clear that we
have a natural way to find anti-particles from preons without the use of ‘signed permutation
transforms’.

In any case the model is becoming somewhat unwieldy, with groups up to order 16 studied
without finding the SU(3) color group. A preon model with more preons than particles is
unaesthetic, not to mention dubious.

3 Simple Examples

I am a firm believer in the power of examples, and will generate a number of

them for use in checking hypotheses.
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Consider the group of the symmetries of an equilateral triangle. It has 6

elements. O3

We may designate the elements of the group by 0 , 1 , 2 , 3 , 4 , and 5 , where 0 is the
identity, a ≡ 4 , b ≡ 1 , b2 ≡ 2 , and so on. We may define a product (Cayley) table for this
group in the following way:

⊙

0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 0 4 5 3

2 2 0 1 5 3 4

3 3 5 4 0 2 1

4 4 3 5 1 0 2

5 5 4 3 2 1 0

(22)

I will dispense with the labels above and to the left, since the group operation with 0 easily
identifies which element is which.

It may be shown, via fairly tedious and trivial algebra, that all elements of δV are zero
except a few which are all simply related to each other. If there are some tiny changes α, β,
and γ; then

δV =





















0 0 0 0 0 0
0 0 0 α −β −α + β
0 0 0 −α β α− β
0 α −α 0 γ −γ
0 −β β −γ 0 γ
0 −α + β α− β γ −γ 0





















(23)

δV ≡
(

0 A
AT 0

)

α +

(

0 B
BT 0

)

β +

(

0 0
0 C

)

γ (24)

where

a ≡







0 0 0
1 0 −1
−1 0 1





 , b ≡







0 0 0
0 −1 1
0 1 −1





 bT = b

c ≡







0 1 −1
−1 0 1
1 −1 0





 cT = −c

A =

(

0 a
aT 0

)

B =

(

0 b
bT 0

)

C =

(

0 0
0 c

)

(25)

The eigenvectors corresponding to eigenvalue 0 of δV are





















1
0
0
0
0
0









































0
1
1
0
0
0









































0
0
0
1
1
1









































0
γ
−γ

α− β
β − α
α + β
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Notice that these eigenvectors commute under the defined field, as expected, as they are
sums of the elements in the conjugacy classes.

[A,B] = −2C [B,C] = 2A+ B [A,C] = −A− 2B

If we set

X ≡ 1

2
(A+ B) Y ≡ 1√

3
C Z ≡ 1

2
√
3
(A−B)

Then we find
[X, Y ] = Z [Y, Z] = X [X,Z] = Y

Let us now define

e ≡ A cos θ +B + C sin θ f ≡ A cos θ −B + C sin θ h ≡ A2 sin θ −B2 cos θ

The resulting commutation relations are

[e, f ] = h [h, e] = 2e [h, f ] = −2f

which are the conditions for generating the simplest Kac-Moody algebra 1. If we set

T1 ≡
1

2
(A+ B) T2 ≡

1

2
√
3
(A−B) T3 ≡

−i√
3
C

then we have [Ti, Tj] = iǫijkTk this is related to the generators for SU(2) or SO(3).

Look at powers of δV . The second power is

δV 2 =





















0 0 0 0
0 2 (α2 + β2 − αβ) −2 (α2 + β2 − αβ) γ (2β − α)
0 −2 (α2 + β2 − αβ) 2 (α2 + β2 − αβ) γ (α− 2β)
0 γ (α− 2β) γ (2β − α) 2 (α2 − γ2)
0 −γ (2α− β) γ (2α− β) −2αβ + γ2

0 γ (α + β) −γ (α + β) 2 (−α2 + αβ) + γ2

(26)

0 0
γ (2α− β) −γ (α + β)
−γ (2α− β) γ (α + β)
−2αβ + γ2 −2 (α2 − αβ) + γ2

2 (β2 − γ2) −2 (β2 − αβ) + γ2

−2 (β2 − αβ) + γ2 2 (α2 − 2αβ + β2)− 2γ2





















To find V , we use V = eδV .

The eigenvalues of the array δV are given by

0 = X4
(

4α2 − 4αβ + 4β2 − 3γ2 −X2
)

(27)

1Infinite Dimensional Lie Algebras, Victor G. Kac, page x; suggested by Georgia Benkart
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The eigenvalues of exp(δV ) thus have 4 1′s, and 2 others which may be real or imaginary
depending on α, β, and γ.

There can be transformations which consist of simple permutations of the elements, or
of permutations with a sign. For this group there are six unsigned permutations, which may
or may not be special cases of the above continuous transform. For those which are not

special cases, the continuous transform may be simply applied to these permutations to get
new families of transformations.

The first set of permutations is given by the mapping 0 → 0, 1 → 1, 2 → 2, and the
following 3 cases: The identity (3 → 3, 4 → 4, and 5 → 5), a left rotation (3 → 4, 4 → 5,
and 5 → 3), and a right rotation (3 → 5, 4 → 3, and 5 → 4). These can be derived from
transformations from the identity.

Another set of permutations is also reachable from transformations from the identity: 0
→ 0, 1 → 2, and 2 → 1, together with the following 3 cases: (3 → 3, 4 → 5, and 5 → 4),
(3 → 4, 4 → 3, and 5 → 5), and (3 → 5, 4 → 4, and 5 → 3).

Consider the group of the symmetries of a square. It has 8 elements, and may be
defined by the following equations:

a2 → 0 , b4 → 0 , ba → ab3 (28)

We may designate the elements of the group by 0 , 1 , 2 , 3 , 4 , 5 , 6 , and 7 , where 0 is
the identity, a ≡ 4 , b ≡ 1 , b2 ≡ 2 , and so on. We may define a product (Cayley) table for
this group in the following way:

⊙

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 0 5 6 7 4

2 2 3 0 1 6 7 4 5

3 3 0 1 2 7 4 5 6

4 4 7 6 5 0 3 2 1

5 5 4 7 6 1 0 3 2

6 6 5 4 7 2 1 0 3

7 7 6 5 4 3 2 1 0

(29)

In the future I will dispense with the labels above and to the left, since the group operation
with 0 easily identifies which element is which.

It may be shown, via fairly tedious and trivial algebra, that all elements of δV are zero
except a few which are all simply related to each other. Let there be some tiny changes α,
β, and γ; then

δV =































0 0 0 0 0 0 0 0
0 0 0 0 α β −α −β
0 0 0 0 0 0 0 0
0 0 0 0 −α −β α β
0 α 0 −α 0 γ 0 −γ
0 β 0 −β −γ 0 γ 0
0 −α 0 α 0 −γ 0 γ
0 −β 0 β γ 0 −γ 0































(30)
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δV ≡
(

0 A
AT 0

)

2α +

(

0 B
BT 0

)

2β +

(

0 0
0 C

)

2γ (31)

where

A ≡ 1

2

(

a −a
−a a

)

a ≡
(

1 0
0 0

)

B ≡ 1

2

(

b −b
−b b

)

b ≡
(

0 0
0 1

)

BT = B

C ≡ 1

2

(

c −c
−c c

)

c ≡
(

0 1
−1 0

)

CT = −C

δV 3 = 4
(

α2 + β2 − γ2
)

δV (32)

Notice that
[A,B] = C [C,B] = A [A,C] = B

Let X = A, Y = C, and Z = B. Then

[X, Y ] = Z [Y, Z] = X [X,Z] = Y

and this has the same structure as the ‘triangle group’.

To find V , we use V = eδV .

The eigenvalues of the δV array are given by

0 = X6
(

X2 − 4
(

α2 + β2 − γ2
))

(33)

The eigenvalues of exp(δV ) have then 6 1’s and two others which are either real or
imaginary, depending on the values of α, β, and γ.

4 An Example with the Quaternion Group

Consider the quaternion group. It has 8 elements, and may be defined by the following
equations:

a4 → 0 , b2 → a2 , ba → a3b (34)

We may designate the elements of the group by 0 , 1 , 2 , 3 , 4 , 5 , 6 , and 7 , where 0

is the identity, a2 ≡ 1 , a ≡ 2 , a3 ≡ 3 , b ≡ 4 , a2b ≡ 5 , ab ≡ 6 , and a3b ≡ 7 . We may define
a product (Cayley) table for this group in the following way:

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 1 0 6 7 5 4

3 2 0 1 7 6 4 5

4 5 7 6 1 0 2 3

5 4 6 7 0 1 3 2

6 7 4 5 3 2 1 0

7 6 5 4 2 3 0 1

(35)
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Grinding through the algebra will show that all elements of δV are zero except a few
which are described by three independent tiny changes α, β, and γ.

δV = α































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 α −α β −β
0 0 0 0 −α α −β β
0 0 −α α 0 0 γ −γ
0 0 α −α 0 0 −γ γ
0 0 −β β −γ γ 0 0
0 0 β −β γ −γ 0 0































(36)

Let a ≡ 1

2

(

1 −1
−1 1

)

a2 = a

A ≡











0 0 0 0
0 0 a 0
0 −a 0 0
0 0 0 0











B ≡











0 0 0 0
0 0 0 a
0 0 0 0
0 −a 0 0











C ≡











0 0 0 0
0 0 0 0
0 0 0 a
0 0 −a 0











BA =











0 0 0 0
0 0 0 0
0 0 0 0
0 0 −a2 0











AB =











0 0 0 0
0 0 0 0
0 0 0 −a2

0 0 0 0











AB − BA =











0 0 0 0
0 0 0 0
0 0 0 −a2

0 0 a2 0











= −C

AC − CA =











0 0 0 0
0 0 0 a2

0 0 0 0
0 −a2 0 0











= B

BC − CB =











0 0 0 0
0 0 −a2 0
0 a2 0 0
0 0 0 0











= −A

From the above, if we let

T1 ≡ B T2 ≡ A T3 ≡ C

we see that
[Ti, Tj ] = ǫijkTk

which describes the generators for the groups O(3) and SU(2). At this point it is not
obvious which is generated here. I cannot use real coefficients to get this into Kac-Moody
form, though I can do it with complex ones (h = 2iB, e = iA+ C, and f = iA− C).
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To generate a transformation one may use the following method:

V = eαA+βB+γC

αA+ βB + γC =











0 0 0 0
0 0 α β
0 −α 0 γ
0 −β −γ 0











≡ Q

Q2 =











0 0 0 0
0 −(α2 + β2) −βγ αγ
0 −βγ −(α2 + γ2) −αβ
0 αγ −αβ −(β2 + γ2)











Q3 = −Q
(

α2 + β2 + γ2
)

In the above, every non-zero matrix element is understood to be multiplied by a, where a is
the 2× 2 array defined above.

V (α, β, γ) = I +
Q

r
sin r +

Q2

r2
(1− cos r) where r ≡

√

α2 + β2 + γ2 (37)

Define ǫ ≡ (1− cos r), and δ ≡ sin r. In its full glory, the array expands to the following:



































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 1− α2+β2

2r2
ǫ α2+β2

2r2
ǫ α

2r
δ − βγ

2r2
ǫ − α

2r
δ + βγ

2r2
ǫ β

2r
δ + αγ

2r2
ǫ − β

2r
δ − αγ

2r2
ǫ

0 0 α2+β2

2r2
ǫ 1− α2+β2

2r2
ǫ − α

2r
δ + βγ

2r2
ǫ α

2r
δ − βγ

2r2
ǫ − β

2r
δ − αγ

2r2
ǫ β

2r
δ + αγ

2r2
ǫ

0 0 − α
2r
δ − βγ

2r2
ǫ α

2r
δ + βγ

2r2
ǫ 1− α2+γ2

2r2
ǫ α2+γ2

2r2
ǫ γ

2r
δ − αβ

2r2
ǫ − γ

2r
δ + αβ

2r2
ǫ

0 0 α
2r
δ + βγ

2r2
ǫ − α

2r
δ − βγ

2r2
ǫ α2+γ2

2r2
ǫ 1− α2+γ2

2r2
ǫ − γ

2r
δ + αβ

2r2
ǫ γ

2r
δ − αβ

2r2
ǫ

0 0 − β
2r
δ + αγ

2r2
ǫ β

2r
δ − αγ

2r2
ǫ − γ

2r
δ − αβ

2r2
ǫ γ

2r
δ + αβ

2r2
ǫ 1− β2+γ2

2r2
ǫ β2+γ2

2r2
ǫ

0 0 β

2r
δ − αγ

2r2
ǫ − β

2r
δ + αγ

2r2
ǫ γ

2r
δ + αβ

2r2
ǫ − γ

2r
δ − αβ

2r2
ǫ β2+γ2

2r2
ǫ 1− β2+γ2

2r2
ǫ



































There are 5 eigenvalues of value 1, with constant eigenvectors. They are all sums of the
members of the 5 distinct conjugacy classes. There is one additional eigenvalue of value 1,
with variable eigenvector. The other two eigenvalues are λ = eir. Notice that the eigenvalues
are functions only of r, so in order for the array V to be a function of α, β, and γ, the
eigenvectors must be functions of α, β, and γ: in other words, not constant.

1






























1
0
0
0
0
0
0
0































1






























0
1
0
0
0
0
0
0































1






























0
0
1
1
0
0
0
0































1






























0
0
0
0
1
1
0
0































1






























0
0
0
0
0
0
1
1































1






























0
0
γ
−γ
−β
β
α
−α































(38)
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eir






























0
0

α2 + β2

−(α2 + β2)
(βγ + iαr)
−(βγ + iαr)
(−αγ + iβr)
−(−αγ + iβr)































e−ir































0
0

α2 + β2

−(α2 + β2)
(βγ − iαr)
−(βγ − iαr)
(−αγ + iβr)
−(−αγ − iβr)































(39)

Denote the eigenvectors in the order above by ei. The first 5 are sums of members of the 5
distinct conjugacy classes, and commute with all the rest. Further, the product of any of e2,
e3 or e4 with any of e5, e6, or e7 is zero. In addition, e1 operating on any of the last three
gives the negative of that eigenvector. The square of any of the last three is a factor times
e1− e0. The product of e6 and e7 is the complex conjugate of the product of e7 and e6. This
leaves only the products of e5 with e6 and e7, which do not commute.

Let us look further at the transformation, but restrict ourselves to β = γ = 0. Then
α = r, ǫ = 2 sin2 α/2, and δ = 2 sinα/2 cosα/2. Let µ ≡ cos2 α/2, ν ≡ sin2 α/2, and
ω ≡ sinα/2 cosα/2. Then the array reduces to































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 µ ν ω −ω 0 0
0 0 ν µ −ω ω 0 0
0 0 −ω ω µ ν 0 0
0 0 ω −ω ν µ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1































When µ = cos2 α/2 = 1, then this becomes the identity. When ν = 1, the inner array
becomes

Λ =











0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0











where Λ swaps the elements c2 and c3 and the elements c4 and c5. This corresponds to
eigenvalues of -1, and r = π. Λ2 = I, of course. This suggests that the group displayed is
SO(3).

There are permutations over the group elements possible here also. For unsigned permu-
tations, there are 3 cases which turn out to be special cases of the above continous transform:
(2 → 3 and 4 → 5), (2 → 3 and 6 → 7), and (4 → 5 and 6 → 7). The first of these is
illustrated directly above. There are two additional cases which are not cases of the original
transformation from the identity–and thus may serve as bases for families of transformations
themselves. These are (2 → 4, 4 → 6, 6 → 2, with (3 → 5, 5 → 7, 7 → 3), and (2 → 6,
6 → 4, 4 → 2, with (3 → 7, 7 → 5, 5 → 3). There are thus 3 families of transformations
based on unsigned permutations of the group elements.
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In addition we can consistently map 2 and 3 to -2 and -3, provided we do the same with
either the pair 4 and 5 or 6 and 7. Likewise 4 and 5 can be mapped to their negatives if
we do the same with 6 and 7, giving us 4 possible sign mappings: the identity and 3 with 4
elements swapping sign. We have 12 families of transformations.

5 An Example with With a 10-Element Group

The non-abelian 10-element group may be defined by the following equations:

a2 → 0 , b5 → 0 , ab → b4a (40)

We may designate the elements of the group by 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7, 8, and 9 ,
where 0 is the identity, b ≡ 1 , b2 ≡ 2 , b3 ≡ 3 , b4 ≡ 4 , a ≡ 5 , ab ≡ 6 , ab2 ≡ 7 , ab3 ≡ 8 , and
ab4 ≡ 9 . We may define a product (Cayley) table for this group in the following way:

0 1 2 3 4 5 6 7 8 9

1 2 3 4 0 9 5 6 7 8

2 3 4 0 1 8 9 5 6 7

3 4 0 1 2 7 8 9 5 6

4 0 1 2 3 6 7 8 9 5

5 6 7 8 9 0 1 2 3 4

6 7 8 9 5 4 0 1 2 3

7 8 9 5 6 3 4 0 1 2

8 9 5 6 7 2 3 4 0 1

9 5 6 7 8 1 2 3 4 0

Grinding through the algebra will show that all elements of δV are zero except a few
which are described by six independent tiny changes α, β, γ, ǫ, µ, and ν.

δV =









































0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 ν −ν − ǫ− γ ν + ǫ+ γ −ν
0 µ ν + ǫ −ν − ǫ −µ
0 ǫ µ+ γ −µ− γ −ǫ
0 γ −ν − µ− γ ν + µ+ γ −γ
0 −ν − µ− ǫ− γ ν + γ −ν − γ ν + µ+ ǫ+ γ

· · ·
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· · ·

0 0 0 0 0
ν µ ǫ γ −ν − µ− γ − ǫ

−ν − ǫ− γ ν + ǫ µ+ γ −ν − µ− γ ν + γ
ν + ǫ+ γ −ν − ǫ −µ− γ ν + µ+ γ −ν − γ

−ν −µ −ǫ −γ ν + µ+ γ + ǫ
0 α β −β −α
−α 0 α β −β
−β −α 0 α β
β −β −α 0 α
α β −β −α 0









































If we set

K =

















0 1 0 0 −1
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
1 0 0 −1 0

















, L =

















0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0

















M =

















0 0 0 0 0
1 0 0 0 −1
−1 1 0 −1 1
1 −1 0 1 −1
−1 0 0 0 1

















, N =

















0 0 0 0 0
0 1 0 0 −1
0 0 1 −1 0
0 0 −1 1 0
0 −1 0 0 1

















P =

















0 0 0 0 0
0 0 1 0 −1
−1 1 0 0 0
1 −1 0 0 0
0 0 −1 0 1

















, Q =

















0 0 0 0 0
0 0 0 1 −1
−1 0 1 −1 1
1 0 −1 1 −1
0 0 0 −1 1

















A =

(

0 0
0 K

)

, B =

(

0 0
0 L

)

, C =

(

0 M
MT 0

)

D =

(

0 N
NT 0

)

, E =

(

0 P
P T 0

)

, F =

(

0 Q
QT 0

)

The commutators of these generators are:

[A,B] = 0 [A,C] = C −D − F [A,D] = 2C − E − F

[A,E] = C +D − 2F [A,F ] = C + E − F [B,C] = D − 2E + F

[B,D] = D − E − F [B,E] = C +D − E [B,F ] = −C + 2D − E

[C,D] = 2A− 2B [C,E] = 2B [C,F ] = 2 ∗ A− 2B

[D,E] = 2B [D,F ] = 2B [E,F ] = 2A− 2B
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The eigenvalues of δV are given by the zeros of the following mess:

0 = x6















































































−X4

+X2 ( 16γν +8γǫ +8µ2 +8µν
+4µǫ +12ν2 +12νǫ +8ǫ2 −5α2

−5β2 +12γ2 + 12γµ)

+ ( − 112γνǫ2 −32γǫ3 −16µ4 −32µ3ν −16µ3ǫ
−64µ2ν2 −64µ2νǫ −16µ2ǫ2 −48µν3 −112µν2ǫ
−96µνǫ2 −16µǫ3 −16ν4 −32ν3ǫ −64ν2ǫ2

−48νǫ3 −16ǫ4 −5α4 +10α3β +5α2β2

+40α2γ2 +40α2γµ +60α2γν +20α2γǫ +20α2µ2

+20α2µν +40α2ν2 +40α2νǫ +20α2ǫ2 −10αβ3

+40αβγ2 +40αβγµ +80αβγν −40αβµǫ +40αβν2

+40αβνǫ −5β4 +20β2γ2 +20β2γµ +20β2γν
+20β2γǫ +20β2µ2 +20β2µν +20β2µǫ +20β2ν2

+20β2νǫ +20β2ǫ2 −16γ4 −32γ3µ −16γ3ν
−48γ3ǫ −64γ2µ2 −64γ2µν −112γ2µǫ −16γ2ν2

−96γ2νǫ −64γ2ǫ2 −48γµ3 −112γµ2ν −96γµ2ǫ
−96γµν2 −176γµνǫ −64γµǫ2 −16γν3 −64γν2ǫ )















































































(41)

If all variables but µ are zero, then this has real eigenvalues, but if all but α are zero, then
this has four imaginary eigenvalues.

6 A4

The alternating group of order 4 (the rotational symmetries of a tetrahedron) is a rather
interesting group. It’s Cayley table is

0 1 2 3 4 5 6 7 8 9 10 11

1 0 7 11 6 9 4 2 10 5 8 3

2 5 6 10 8 11 0 3 9 4 7 1

3 4 8 9 7 10 5 1 11 0 6 2

4 3 1 2 5 0 7 8 6 10 11 9

5 2 3 1 0 4 8 6 7 11 9 10

6 11 0 7 9 1 2 10 4 8 3 5

7 9 4 8 10 3 1 11 5 6 2 0

8 10 5 6 11 2 3 9 0 7 1 4

9 7 11 0 1 6 10 4 2 3 5 8

10 8 9 4 3 7 11 5 1 2 0 6

11 6 10 5 2 8 9 0 3 1 4 7

18



After grinding through the algebra one finds for it’s differential matrix:

0 0 0 0 0 0 ...
0 0 τ ν ǫ −β ...
0 ν 0 τ δ − τ γ ...
0 τ ν 0 −α ǫ+ µ ...
0 β µ −α 0 0 ...
0 −ǫ γ β + δ − τ 0 0 ...
0 −τ 0 α + γ −γ −µ ...
0 ǫ α −β − δ β −γ − α ...
0 0 −δ ǫ+ µ −ǫ− µ β + δ − τ ...
0 −ν −γ − α 0 τ − β − δ α ...
0 0 δ − τ −ǫ− µ− ν µ τ − δ ...
0 −β −µ− ν −γ γ + α −ǫ ...

... 0 0 0 0 0 0

... −ν β 0 −τ 0 −ǫ

... 0 α −ν − µ −α− γ µ −δ

... α + γ −ǫ− ν − µ β + δ − τ 0 −β − δ −γ

... −γ ǫ τ − β − δ −ǫ− µ δ − τ α + γ

... τ − δ −α− γ ǫ+ µ α −µ −β

... 0 µ+ ν δ −ν τ − δ −α

... δ 0 µ+ ν γ −ǫ− µ− ν 0

... µ+ ν δ 0 τ − β − δ 0 −µ− ν

... −τ γ −ǫ− µ 0 ǫ+ µ+ ν β + δ

... −µ −β − δ 0 β + δ 0 ǫ+ µ+ ν

... −α 0 −δ ǫ+ µ+ ν β + δ 0

There are 8 generators that appear from the above, whose commutation relations look
like

[A,B] = C − 2F −H [A,C] = B − 2E −G
[A,D] = 0 [A,E] = −C −H

[A,F ] = −B −G [A,G] = C − 2F −H
[A,H] = B − 2E −G [B,C] = 0
[B,D] = −C + F + 2H [B,E] = C − F − 2H

[B,F ] = 4A−B − 2D + E + 2G [B,G] = −C + 2F +H
[B,H] = −2A+ B + 4D − 2E −G [C,D] = −B + E + 2G
[C,E] = −4A− B + 2D + E + 2G [C,F ] = C − F − 2H
[C,G] = 2A+ B − 4D − 2E −G [C,H] = −C + 2F +H

[D,E] = C − F − 2H [D,F ] = B − E − 2G
[D,G] = −C − F [D,H] = −B − E

[E,F ] = 0 [E,G] = −2C + F +H
[E,H] = 2A+ 2B + 2D − E −G [F,G] = −2A+ 2B − 2D − E −G

[F,H] = −2C + F +H [G,H] = 0

This is certainly messy, but some simplifications help.
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7 Examples With 16-Element Groups

7.1 16-element group 1

One of the non-abelian 16-element groups may be defined as in the following table with the
group elements designated by 0, 1, 2 . . . 15. It generated by the relations a2 = 0, b2 = a,
c2 = b−1, d2 = 0, a = b−1d−1bd, and b = c−1d−1cd; where a is 4, b is 2, c is 3, and d is 8. The
resulting product (Cayley) table is:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 0 14 15 13 12 8 9 10 11

2 3 4 5 6 7 0 1 10 11 9 8 14 15 13 12

3 4 5 6 7 0 1 2 13 12 15 14 10 11 9 8

4 5 6 7 0 1 2 3 9 8 11 10 13 12 15 14

5 6 7 0 1 2 3 4 15 14 12 13 9 8 11 10

6 7 0 1 2 3 4 5 11 10 8 9 15 14 12 13

7 0 1 2 3 4 5 6 12 13 14 15 11 10 8 9

8 12 11 15 9 13 10 14 0 4 6 2 1 5 7 3

9 13 10 14 8 12 11 15 4 0 2 6 5 1 3 7

10 14 8 12 11 15 9 13 2 6 0 4 3 7 1 5

11 15 9 13 10 14 8 12 6 2 4 0 7 3 5 1

12 11 15 9 13 10 14 8 7 3 5 1 0 4 6 2

13 10 14 8 12 11 15 9 3 7 1 5 4 0 2 6

14 8 12 11 15 9 13 10 1 5 7 3 2 6 0 4

15 9 13 10 14 8 12 11 5 1 3 7 6 2 4 0

This group has a set of infinitesimal transformations given by

δV =





































































0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 λ µ− ǫ −ρ 0 ρ ǫ− µ −λ
0 ρ ǫ− µ −λ 0 λ µ− ǫ −ρ
0 −σ ν − ǫ λ+ ρ− σ 0 σ − ρ− λ ǫ− ν σ
0 σ − ρ− λ ǫ− ν σ 0 −σ ν − ǫ λ+ ρ− σ
0 µ σ − ρ −ν 0 ν ρ− σ −µ
0 ν ρ− σ −µ 0 µ σ − ρ −ν
0 −ǫ λ− σ ν + µ− ǫ 0 ǫ− ν − µ σ − λ ǫ
0 ǫ− µ− ν σ − λ ǫ 0 −ǫ λ− σ µ+ ν − ǫ

· · ·

20



· · ·

0 0 0 0 0 0 0 0
λ ρ −σ σ − ρ− λ µ ν −ǫ ǫ− µ− ν

µ− ǫ ǫ− µ ν − ǫ ǫ− ν σ − ρ ρ− σ λ− σ σ − λ
−ρ −λ ρ+ λ− σ σ −ν −µ µ+ ν − ǫ ǫ
0 0 0 0 0 0 0 0
ρ λ σ − ρ− λ −σ ν µ ǫ− µ− ν −ǫ

ǫ− µ µ− ǫ ǫ− ν ν − ǫ ρ− σ σ − ρ σ − λ λ− σ
−λ −ρ σ λ+ ρ− σ −µ −ν ǫ µ+ ν − ǫ
0 0 −α α −β −γ β γ
0 0 α −α −γ −β γ β
α −α 0 0 γ β −β −γ
−α α 0 0 β γ −γ −β
β γ −γ −β 0 0 −α α
γ β −β −γ 0 0 α −α
−β −γ β γ α −α 0 0
−γ −β γ β −α α 0 0





































































Here δV is given by αA′+βB′+γG′+µM ′+νN ′+ρR′+σS ′+λL′+ ǫE ′. If we combine
these we can simplify the commutation relations. For instance, let E = M ′ + N ′ + E ′,
L = R′ + S ′ + L′, and G = G′ + B′. Then the 36 non-trivial commutation relations appear
as

[A,B] = 0 [A,G] = 0 [A,L] = 0

[A,E] = 0 [B,G] = 0 [G,S] = 0

[M,E] = 0 [N,S] = 0 [N,E] = 0

[R,L] = 0 [S, L] = 0 [S,E] = 0

[A,M ] = E − 2N [A,N ] = 2M − E [A,R] = L2R− 2S

[A, S] = 4R + 2S − 2L [B,M ] = L− S [B,N ] = 2R + S

[B,R] = −M −N [B, S] = 2M − ED [B,L] = −2E

[B,E] = 2L [G,M ] = 2L [G,N ] = 2L

[G,R] = −2E [G,L] = −4E [G,E] = 4L

[M,N ] = 2A [M,R] = −2B [M,S] = 4B − 2G

[M,L] = −2G [N,R] = −2B [N,L] = −2G

[R, S] = 2A [R,E] = 2G [L,E] = 4G

The generators A, B, and G form one subset. Note that the commutators of G, L, and
E cycle, as do those of A, E − 2M , and E − 2N . At the moment I am unable to identify
this with one of the classical Lie groups.

The eigenfunction of the differential tranformation array is rather messy, but has the
form

0 = x8
(

x6 + () x4 + () x2 + ()
)

where the last quantity in parenthesis is about 2 pages long. The quantities inside the
parentheses are polynomials in the differential changes.
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7.2 16-element group 2

Another one of the non-abelian 16-element groups may be defined as in the following table
with the group elements designated by 0, 1, 2 . . . 15. It generated by the relations
a2 = b2 = c2 = 0, x2 = a, and a = b−1c−1bc, where x is 1, a is 2, b is 9, and c is 13. The
resulting product (Cayley) table is:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14

4 5 6 7 2 3 0 1 14 15 12 13 8 9 10 11

5 6 7 4 3 0 1 2 15 12 13 14 9 10 11 8

6 7 4 5 0 1 2 3 12 13 14 15 10 11 8 9

7 4 5 6 1 2 3 0 13 14 15 12 11 8 9 10

8 9 10 11 12 13 14 15 2 3 0 1 6 7 4 5

9 10 11 8 13 14 15 12 3 0 1 2 7 4 5 6

10 11 8 9 14 15 12 13 0 1 2 3 4 5 6 7

11 8 9 10 15 12 13 14 1 2 3 0 5 6 7 4

12 13 14 15 10 11 8 9 4 5 6 7 2 3 0 1

13 14 15 12 11 8 9 10 5 6 7 4 3 0 1 2

14 15 12 13 8 9 10 11 6 7 4 5 0 1 2 3

15 12 13 14 9 10 11 8 7 4 5 6 1 2 3 0

This group has a set of infinitesimal transformations given by

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ǫ µ −ǫ −µ γ −δ −γ δ
0 0 0 0 0 0 0 0 −µ ǫ µ −ǫ δ γ −δ −γ
0 0 0 0 0 0 0 0 −ǫ −µ ǫ µ −γ δ γ −δ
0 0 0 0 0 0 0 0 µ −ǫ −µ ǫ −δ −γ δ γ
0 0 0 0 −ǫ −µ ǫ µ 0 0 0 0 −α β α −β
0 0 0 0 µ −ǫ −µ ǫ 0 0 0 0 −β −α β α
0 0 0 0 ǫ µ −ǫ −µ 0 0 0 0 α −β −α β
0 0 0 0 −µ ǫ µ −ǫ 0 0 0 0 β α −β −α
0 0 0 0 −γ δ γ −δ α −β −α β 0 0 0 0
0 0 0 0 −δ −γ δ γ β α −β −α 0 0 0 0
0 0 0 0 γ −δ −γ δ −α β α −β 0 0 0 0
0 0 0 0 δ γ −δ −γ −β −α β α 0 0 0 0
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If we define S and T such that

S ≡ 1

2











1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1











T ≡ 1

2











0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0











A =











0 0 0 0
0 0 0 0
0 0 0 −S
0 0 S 0











B =











0 0 0 0
0 0 0 0
0 0 0 T
0 0 −T 0











C =











0 0 0 0
0 0 0 S
0 0 0 0
0 −S 0 0











D =











0 0 0 0
0 0 0 T
0 0 0 0
0 −T 0 0











E =











0 0 0 0
0 0 S 0
0 −S 0 0
0 0 0 0











F =











0 0 0 0
0 0 T 0
0 −T 0 0
0 0 0 0











Notice that S2 = S, T 2 = −S, and ST = TS = T . These two arrays are thus isomorphic to
1 and i. The commutation relations among the generators are:

[A,B] = 0 [C,D] = 0 [E,F ] = 0

[C,E] = −A [E,A] = −C [A,C] = −E

[D,F ] = A [F,A] = −D [A,D] = −F

[D,E] = B [E,B] = D [B,D] = −E

[C,F ] = B [F,B] = −C [B,C] = F

These are the generators of the special group Sl(2,c), the set of 2x2 complex matrices with
determinant 1? This is NOT isomorphic to the previous group.

7.3 16-element group 3

One of the non-abelian 16-element groups may be defined as in the following table with the
group elements designated by The relations a2 = b2 = x, x = a−1b−1ab, and x2 = y2 = 0
define a non-abelian 16-element group, with group elements I will designate 0, 1, 2 . . . 15,
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where a is 8, b is 12, x is 1, and y is 2. This gives the following product (Cayley) table:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 5 6 7 1 0 3 2 12 13 14 15 9 8 11 10

5 4 7 6 0 1 2 3 13 12 15 14 8 9 10 11

6 7 4 5 3 2 1 0 14 15 12 13 11 10 9 8

7 6 5 4 2 3 0 1 15 14 13 12 10 11 8 9

8 9 10 11 13 12 15 14 1 0 3 2 4 5 6 7

9 8 11 10 12 13 14 15 0 1 2 3 5 4 7 6

10 11 8 9 15 14 13 12 3 2 1 0 6 7 4 5

11 10 9 8 14 15 12 13 2 3 0 1 7 6 5 4

12 13 14 15 8 9 10 11 5 4 7 6 1 0 3 2

13 12 15 14 9 8 11 10 4 5 6 7 0 1 2 3

14 15 12 13 10 11 8 9 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 6 7 4 5 2 3 0 1

(42)

Using the standard techniques, we find that δ V depends on 6 parameters as follows:

δV =





































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ǫ −ǫ µ −µ γ −γ δ −δ
0 0 0 0 0 0 0 0 −ǫ ǫ −µ µ −γ γ −δ δ
0 0 0 0 0 0 0 0 µ −µ ǫ −ǫ δ −δ γ −γ
0 0 0 0 0 0 0 0 −µ µ −ǫ ǫ −δ δ −γ γ
0 0 0 0 −ǫ ǫ −µ µ 0 0 0 0 α −α β −β
0 0 0 0 ǫ −ǫ µ −µ 0 0 0 0 −α α −β β
0 0 0 0 −µ µ −ǫ ǫ 0 0 0 0 β −β α −α
0 0 0 0 µ −µ ǫ −ǫ 0 0 0 0 −β β −α α
0 0 0 0 −γ γ −δ δ −α α −β β 0 0 0 0
0 0 0 0 γ −γ δ −δ α −α β −β 0 0 0 0
0 0 0 0 −δ δ −γ γ −β β −α α 0 0 0 0
0 0 0 0 δ −δ γ −γ β −β α −α 0 0 0 0





































































(43)

A simple pattern is immediately evident. Let

Q ≡ 1

2

(

1 −1
−1 1

)

R =

(

Q 0
0 Q

)

S =

(

0 Q
Q 0

)

(44)
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It is fairly easy to see that RS = SR = −S and that R2 = S2 = −R. Now define the
‘infinitesimal generators’ in our space, A through F as

A =











0 0 0 0
0 0 0 0
0 0 0 −R
0 0 R 0











B =











0 0 0 0
0 0 0 0
0 0 0 −S
0 0 S 0











C =











0 0 0 0
0 0 0 −R
0 0 0 0
0 R 0 0











D =











0 0 0 0
0 0 0 −S
0 0 0 0
0 S 0 0











E =











0 0 0 0
0 0 −R 0
0 R 0 0
0 0 0 0











F =











0 0 0 0
0 0 −S 0
0 S 0 0
0 0 0 0











The commutators of these generators are very simple:

[A,B] = 0 [C,D] = 0 [E,F ] = 0

[C,E] = A [E,A] = C [A,C] = E

[D,F ] = A [F,A] = D [A,D] = F

[C,F ] = B [F,B] = C [B,C] = F

[D,E] = B [E,B] = D [B,D] = E

Using the notation of Gilmore 2, if I make the identifications

A = O13 B = O24 C = O12 D = −O34 E = O23 F = −O14

these are just the generators of the group SO(4). This is NOT isomorphic to the previous
group.

7.4 16-element group 4

Another of the 16-element groups is generated by the elements 3 2 = 11 , 8 2 = 0 , 11 =
3−18−138 , and 11 2 = 4 2 = 0 , with 11x = x11 and 4x = x4 .

2Lie Groups, Lie Algebras, and Some of Their Applications, page 187
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 3 0 1 6 7 4 5 14 15 12 13 10 11 8 9

3 2 1 0 7 6 5 4 15 14 13 12 11 10 9 8

4 5 6 7 1 0 3 2 11 10 8 9 14 15 13 12

5 4 7 6 0 1 2 3 10 11 9 8 15 14 12 13

6 7 4 5 3 2 1 0 13 12 14 15 8 9 11 10

7 6 5 4 2 3 0 1 12 13 15 14 9 8 10 11

8 9 14 15 10 11 12 13 0 1 4 5 6 7 2 3

9 8 15 14 11 10 13 12 1 0 5 4 7 6 3 2

10 11 12 13 9 8 15 14 5 4 0 1 2 3 7 6

11 10 13 12 8 9 14 15 4 5 1 0 3 2 6 7

12 13 10 11 15 14 9 8 7 6 2 3 0 1 5 4

13 12 11 10 14 15 8 9 6 7 3 2 1 0 4 5

14 15 8 9 12 13 10 11 2 3 6 7 4 5 0 1

15 14 9 8 13 12 11 10 3 2 7 6 5 4 1 0

The δV for this has 6 variables: α, β, γ, ǫ, µ, and σ; which multiply arrays I denote by
A, B, C, D, E, and F respectively.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 γ −γ µ −µ σ −σ ǫ −ǫ
0 0 0 0 0 0 0 0 −γ γ −µ µ −σ σ −ǫ ǫ
0 0 0 0 0 0 0 0 ǫ −ǫ σ −σ µ −µ γ −γ
0 0 0 0 0 0 0 0 −ǫ ǫ −σ σ −µ µ −γ γ
0 0 0 0 γ −γ ǫ −ǫ 0 0 α −α β −β 0 0
0 0 0 0 −γ γ −ǫ ǫ 0 0 −α α −β β 0 0
0 0 0 0 µ −µ σ −σ −α α 0 0 0 0 −β β
0 0 0 0 −µ µ −σ σ α −α 0 0 0 0 β −β
0 0 0 0 σ −σ µ −µ −β β 0 0 0 0 −α α
0 0 0 0 −σ σ −µ µ β −β 0 0 0 0 α −α
0 0 0 0 ǫ −ǫ γ −γ 0 0 β −β α −α 0 0
0 0 0 0 −ǫ ǫ −γ γ 0 0 −β β −α α 0 0
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The eigenvalues are given by the solutions to

0 = X12



























X4

+8X2 (α2 + β2 − ǫ2 − γ2 − µ2 −σ2)

+32







ǫ2µ2 +ǫ2σ2 +γ2µ2 +γ2σ2 α2β2

−α2ǫ2 −α2γ2 −α2µ2 −α2σ2 −β2ǫ2

−β2γ2 −β2µ2 −β2σ2 −µ2σ2 −ǫ2γ2







+128αβǫγ + 128αβµσ − 128ǫγµσ
+16α4 + 16β4 + 16ǫ4 + 16γ4 + 16µ4 + 16σ4



























The generator commutation relations are as follows:

[A,B] = 0 [C,D] = 0 [E,F ] = 0

[C,E] = A [E,A] = −C [A,C] = −E

[C,F ] = B [F,B] = −C [B,C] = −F

[D,E] = B [E,B] = −D [B,D] = −E

[D,F ] = A [F,A] = −D [A,D] = −F

7.5 16-element group 5

Another 16-element group is generated by 1 2 = 0 , 2 2 = 4 , 4 2 = 8 2 = 0 , 8 = 1−12−112 ,
8x = x8 , and 4x = x4 . The product (Cayley) table here is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 11 4 13 6 15 0 9 10 3 12 5 14 7 8 1

3 10 5 12 7 14 1 8 11 2 13 4 15 6 9 0

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 15 0 9 2 11 4 13 14 7 8 1 10 3 12 5

7 14 1 8 3 10 5 12 15 6 9 0 11 2 13 4

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 3 12 5 14 7 8 1 2 11 4 13 6 15 0 9

11 2 13 4 15 6 9 0 3 10 5 12 7 14 1 8

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 7 8 1 10 3 12 5 6 15 0 9 2 11 4 13

15 6 9 0 11 2 13 4 7 14 1 8 3 10 5 12
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This results in a δV of the form

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 µ −β 0 0 −σ −ǫ 0 0 −µ β 0 0 σ ǫ
0 σ 0 −α 0 −µ 0 −γ 0 −σ 0 α 0 µ 0 γ
0 −ǫ −α 0 0 −β −γ 0 0 ǫ α 0 0 β γ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −σ −ǫ 0 0 µ −β 0 0 σ ǫ 0 0 −µ β
0 −µ 0 −γ 0 σ 0 −α 0 µ 0 γ 0 −σ 0 α
0 −β −γ 0 0 −ǫ −α 0 0 β γ 0 0 ǫ α 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −µ β 0 0 σ ǫ 0 0 µ −β 0 0 −σ −ǫ
0 −σ 0 α 0 µ 0 γ 0 σ 0 −α 0 −µ 0 −γ
0 ǫ α 0 0 β γ 0 0 −ǫ −α 0 0 −β −γ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 σ ǫ 0 0 −µ β 0 0 −σ −ǫ 0 0 µ −β
0 µ 0 γ 0 −σ 0 α 0 −µ 0 −γ 0 σ 0 −α
0 β γ 0 0 ǫ α 0 0 −β −γ 0 0 −ǫ −α 0

The commutation relations among the generators are as follows, where 2αA + 2βB +
2γC + 2ǫD + 2µE + 2σF = δV :

[A,C] = 0 [B,D] = A [B,F ] = −C [E,D] = C [E,F ] = −A
[B,E] = 0 [D,A] = E [F,C] = −E [D,C] = B [F,A] = −B
[D,F ] = 0 [A,E] = −D [C,E] = F [C,B] = −D [A,B] = F

The eigenfunction for the differential array is given below. There are 10 constant eigenvectors
with eigenvalue 0 (for the differential array) or 1 (for the full transformation.

0 = X12































X4

+X2 (−16σµ+ (−16ǫβ + (−8α2 − 8γ2)))
+

−16µ4 + (32β2 + (32σ2 + (32ǫ2 + 64γα)))µ2

+(128ǫσβ + (64α2 + 64γ2) σ)µ
+(−16β4 + (32σ2 + (32ǫ2 − 64γα)) β2

+(64α2 + 64γ2) ǫβ + (−16σ4 + (32ǫ2 + 64γα) σ2

+ (−16ǫ4 − 64γαǫ2 + (16α4 − 32γ2α2 + 16γ4))))































7.6 16-element group 6

There is a 6’th 16-element non-abelian group, generated by the following relations: 1 2 = 4 ,
2 2 = 8 , 4 = 1−12−112 , and 4 2 = 8 2 = 0 , with 4x = x4 , 8x = x8 . It’s product (Cayley)
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table is given by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4 3 6 5 0 7 2 9 12 11 14 13 8 15 10

2 7 8 13 6 3 12 9 10 15 0 5 14 11 4 1

3 2 9 8 7 6 13 12 11 10 1 0 15 14 5 4

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 0 7 2 1 4 3 6 13 8 15 10 9 12 11 14

6 3 12 9 2 7 8 13 14 11 4 1 10 15 0 5

7 6 13 12 3 2 9 8 15 14 5 4 11 10 1 0

8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 12 11 14 13 8 15 10 1 4 3 6 5 0 7 2

10 15 0 5 14 11 4 1 2 7 8 13 6 3 12 9

11 10 1 0 15 14 5 4 3 2 9 8 7 6 13 12

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 8 15 10 9 12 11 14 5 0 7 2 1 4 3 6

14 11 4 1 10 15 0 5 6 3 12 9 2 7 8 13

15 14 5 4 11 10 1 0 7 6 13 12 3 2 9 8

Solving for the differential gives the following somewhat unusual array. Note that an
element is no longer equal to the absolute value of the element in its transpose position.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 µ −β 0 0 −µ β 0 0 −σ −ǫ 0 0 σ ǫ
0 −σ 0 −α 0 σ 0 α 0 µ 0 −γ 0 −µ 0 γ
0 −ǫ α 0 0 ǫ −α 0 0 −β γ 0 0 β −γ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −µ β 0 0 µ −β 0 0 σ ǫ 0 0 −σ −ǫ
0 σ 0 α 0 −σ 0 −α 0 −µ 0 γ 0 µ 0 −γ
0 ǫ −α 0 0 −ǫ α 0 0 β −γ 0 0 −β γ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −σ −ǫ 0 0 σ ǫ 0 0 µ −β 0 0 −µ β
0 µ 0 −γ 0 −µ 0 γ 0 −σ 0 −α 0 σ 0 α
0 −β γ 0 0 β −γ 0 0 −ǫ α 0 0 ǫ −α 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 σ ǫ 0 0 −σ −ǫ 0 0 −µ β 0 0 µ −β
0 −µ 0 γ 0 µ 0 −γ 0 σ 0 α 0 −σ 0 −α
0 β −γ 0 0 −β γ 0 0 ǫ −α 0 0 −ǫ α 0
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The eigenvalue of this differential transform are (found by REDUCE)

X12



























16α4 −16σ4 −16µ4 +16γ4 −16β4

−16ǫ4 −64α2βǫ +32µ2σ2 −32α2γ2 +64α2µσ
+64αβ2γ +64αǫ2γ +64αγµ2 +64αγσ2 +32β2ǫ2

−32β2µ2 −32β2σ2 −64βǫγ2 −128βǫµσ −32ǫ2µ2

−32ǫ2σ2 +64γ2µσ
−16βǫX2 +8γ2X2 +16µσX2 +8α2X2

+X4



























Natural generators are given by δV = 2αA+2βB+2γC+2ǫD+2µE+2σF . The commutation
relation among these generators are

[A,C] = 0 [B,E] = A [B,F ] = −C [D,E] = −C [D,F ] = A
[B,D] = 0 [E,A] = B [F,C] = −B [E,C] = −D [F,A] = D
[E,F ] = 0 [A,B] = −F [C,B] = E [C,D] = F [A,D] = −E

7.7 16-element group 7

The seventh of our non-abelian 16-element groups is generated by the relations 4 2 = 8 2 = 0 ,
1 2 = 2 , 2 2 = 4 , and 4 = 8−11−181 .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 8

2 3 4 5 6 7 0 1 10 11 12 13 14 15 8 9

3 4 5 6 7 0 1 2 11 12 13 14 15 8 9 10

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 6 7 0 1 2 3 4 13 14 15 8 9 10 11 12

6 7 0 1 2 3 4 5 14 15 8 9 10 11 12 13

7 0 1 2 3 4 5 6 15 8 9 10 11 12 13 14

8 13 10 15 12 9 14 11 0 5 2 7 4 1 6 3

9 14 11 8 13 10 15 12 1 6 3 0 5 2 7 4

10 15 12 9 14 11 8 13 2 7 4 1 6 3 0 5

11 8 13 10 15 12 9 14 3 0 5 2 7 4 1 6

12 9 14 11 8 13 10 15 4 1 6 3 0 5 2 7

13 10 15 12 9 14 11 8 5 2 7 4 1 6 3 0

14 11 8 13 10 15 12 9 6 3 0 5 2 7 4 1

15 12 9 14 11 8 13 10 7 4 1 6 3 0 5 2
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The resulting δV is given by

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 µ −γ −σ −ǫ −µ γ σ ǫ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 σ ǫ µ −γ −σ −ǫ −µ γ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −µ γ σ ǫ µ −γ −σ −ǫ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −σ −ǫ −µ γ σ ǫ µ −γ
0 σ 0 µ 0 −σ 0 −µ 0 −α 0 −β 0 α 0 β
0 −γ 0 −ǫ 0 γ 0 ǫ β 0 −α 0 −β 0 α 0
0 −µ 0 σ 0 µ 0 −σ 0 β 0 −α 0 −β 0 α
0 ǫ 0 −γ 0 −ǫ 0 γ α 0 β 0 −α 0 −β 0
0 −σ 0 −µ 0 σ 0 µ 0 α 0 β 0 −α 0 −β
0 γ 0 ǫ 0 −γ 0 −ǫ −β 0 α 0 β 0 −α 0
0 µ 0 −σ 0 −µ 0 σ 0 −β 0 α 0 β 0 −α
0 −ǫ 0 γ 0 ǫ 0 −γ −α 0 −β 0 α 0 β 0

Once again, the generators themselves are sometimes neither symmetric nor anti-symmetric.
The natural generators are just the arrays corresponding to the above differentials, divided
by 2. δV = 2αA+ 2βB + 2γC + 2ǫD + 2µE + 2σF . Their commutators are

[A,B] = 0 [C,D] = A [E,D] = B [C,F ] = B [E,F ] = −A
[C,E] = 0 [D,A] = E [D,B] = −C [F,B] = −E [F,A] = −C
[D,F ] = 0 [A,E] = −F [B,C] = −F [B,E] = D [A,C] = −D

The eigenvalues of this differential transform are the solutions to the following equation
(found by REDUCE):

X12



























16α4 +32α2β2 +64α2ǫγ +32α2µ2 −32α2σ2

+16σ4 +64αβǫ2 −64αβγ2 −128αβµσ +16β4

−64β2ǫγ −32β2µ2 +32β2σ2 +16ǫ4 +32ǫ2γ2

−64ǫ2µσ +64ǫγµ2 −64ǫγσ2 +16γ4 +64γ2µσ
+16µ4 +32µ2σ2

−8γ2X2 −16µσX2 +16αβX2 +8ǫ2X2

+X4



























7.8 16-element group 8

An 8’th 16-element group is generated by the relations 2 2 = 0 , 1 2 = 2 , 8 2 = 1−1, 4 2 = 2 ,
2 = 1−14−114 , and 1 = 8−14−184 . The product (Cayley) table resulting is
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 0 6 7 5 4 10 11 9 8 14 15 13 12

2 3 0 1 5 4 7 6 9 8 11 10 13 12 15 14

3 0 1 2 7 6 4 5 11 10 8 9 15 14 12 13

4 7 5 6 2 0 1 3 14 15 12 13 11 10 9 8

5 6 4 7 0 2 3 1 15 14 13 12 10 11 8 9

6 4 7 5 3 1 2 0 13 12 14 15 8 9 11 10

7 5 6 4 1 3 0 2 12 13 15 14 9 8 10 11

8 10 9 11 12 13 14 15 3 1 0 2 7 6 4 5

9 11 8 10 13 12 15 14 1 3 2 0 6 7 5 4

10 9 11 8 14 15 13 12 0 2 1 3 4 5 6 7

11 8 10 9 15 14 12 13 2 0 3 1 5 4 7 6

12 15 13 14 9 8 10 11 4 5 7 6 2 0 1 3

13 14 12 15 8 9 11 10 5 4 6 7 0 2 3 1

14 12 15 13 11 10 9 8 6 7 4 5 3 1 2 0

15 13 14 12 10 11 8 9 7 6 5 4 1 3 0 2

This has a solution with 9 parameters.
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0 0 0 0 0 0 0 0 ...
0 0 0 0 −ρ ρ −λ λ ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 ρ −ρ λ −λ ...
0 ρ 0 −ρ 0 0 −α α ...
0 −ρ 0 ρ 0 0 α −α ...
0 λ 0 −λ α −α 0 0 ...
0 −λ 0 λ −α α 0 0 ...
0 0 0 0 ν ν − µ− σ σ − ν µ− ν ...
0 0 0 0 ν − µ− σ ν µ− ν σ − ν ...
0 0 0 0 −ν µ+ σ − ν ν − σ ν − µ ...
0 0 0 0 µ+ σ − ν −ν ν − µ ν − σ ...
0 µ 0 −µ β τ −τ −β ...
0 −µ 0 µ τ β −β −τ ...
0 σ 0 −σ −β −τ β τ ...
0 −σ 0 σ −τ −β τ β ...

... 0 0 0 0 0 0 0 0

... 0 0 0 0 −µ µ −σ σ

... 0 0 0 0 0 0 0 0

... 0 0 0 0 µ −µ σ −σ

... ν − µ− σ ν µ+ σ − ν −ν −β −τ β τ

... ν ν − µ− σ −ν µ+ σ − ν −τ −β τ β

... µ− ν σ − ν ν − µ ν − σ τ β −β −τ

... σ − ν µ− ν ν − σ ν − µ β τ −τ −β

... 0 0 0 0 ρ− λ− ǫ −ǫ λ+ ǫ −ρ+ ǫ

... 0 0 0 0 −ǫ ρ− λ− ǫ ǫ− ρ λ+ ǫ

... 0 0 0 0 λ+ ǫ− ρ ǫ −λ− ǫ ρ− ǫ

... 0 0 0 0 ǫ λ+ ǫ− ρ ρ− ǫ −λ− ǫ

... −ǫ ρ− λ− ǫ ǫ λ+ ǫ− ρ 0 0 −α α

... ρ− λ− ǫ −ǫ λ+ ǫ− ρ ǫ 0 0 α −α

... ǫ− ρ λ+ ǫ ρ− ǫ −λ− ǫ α −α 0 0

... λ+ ǫ ǫ− ρ −λ− ǫ ρ− ǫ −α α 0 0

α → C1 β → C2 ǫ → C8

ρ → C9 λ → C3 µ → C4

ν → C6 σ → C5 τ → C7

If we define new generators based on the old ones, the commutation relations are greatly
simplified:
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D1 = 1/4 (C2 + C7) D2 = 1/4C6 D3 = 1/4C8

D4 = 2C3 − C8 D5 = C1 D6 = C4 + C5 + C6

D7 = C4 − C5 D8 = C2 − C7 D9 = C8 + 2C9

[D1, D2] = −D3 [D2, D3] = D1 [D3, D1] = D2

[D4, D5] = 2D9 [D4, D6] = 4D8 [D4, D8] = −4D6

[D4, D9] = −8D5 [D5, D6] = −2D7 [D5, D7] = 2D6

[D5, D9] = 2D4 [D6, D7] = −4D5 [D6, D8] = 2D4

[D7, D8] = 2D9 [D7, D9] = −4D8 [D8, D9] = 4D7

The transformation partitions neatly into a transformation based on D1, D2, and D3,
and a transformation based on the other 6.

The group has four one-dimensional and three two-dimensional representations. If I can
partition the transformation based on 6 parameters into 2 based on three it may be possible
to link the N-dimensional representations with the transformations. This does not seem
to be possible. Either I have an error in the generator commutations or I must abandon
the hypothesis that the transformations may be partitioned into transformations of the
independent representations.

The Casimir invariant is simple:

−1/32C2

1 + 1/32C2

2 + 1/32C2

3 − 1/64C2

4 − 1/8C2

5 − 1/16C2

6 − 1/32C2

7 − 1/16C2

8 − 1/32C2

9

7.9 16-element group 9

The ninth non-abelian 16-element group is generated by the following relations: 1 2 = 2 ,
2 2 = 4 , 4 2 = 0 , 8 2 = 0 , 4 = 2−18−128 , and 2 = 1−18−118 . The resulting product
(Cayley) table is:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 0 9 10 11 12 13 14 15 8

2 3 4 5 6 7 0 1 10 11 12 13 14 15 8 9

3 4 5 6 7 0 1 2 11 12 13 14 15 8 9 10

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 6 7 0 1 2 3 4 13 14 15 8 9 10 11 12

6 7 0 1 2 3 4 5 14 15 8 9 10 11 12 13

7 0 1 2 3 4 5 6 15 8 9 10 11 12 13 14

8 11 14 9 12 15 10 13 0 3 6 1 4 7 2 5

9 12 15 10 13 8 11 14 1 4 7 2 5 0 3 6

10 13 8 11 14 9 12 15 2 5 0 3 6 1 4 7

11 14 9 12 15 10 13 8 3 6 1 4 7 2 5 0

12 15 10 13 8 11 14 9 4 7 2 5 0 3 6 1

13 8 11 14 9 12 15 10 5 0 3 6 1 4 7 2

14 9 12 15 10 13 8 11 6 1 4 7 2 5 0 3

15 10 13 8 11 14 9 12 7 2 5 0 3 6 1 4
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The differential transform array is given by

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0
0 χ −µ− δ −χ 0 −σ µ+ δ σ .
0 µ σ − ǫ −µ 0 ν ǫ− σ −ν
0 ǫ −δ − ν −ǫ 0 σ − ǫ− χ ν + δ χ+ ǫ− σ .
0 δ ǫ+ χ −δ 0 −µ− ν − δ −ǫ− χ µ+ δ + ν
0 −σ µ+ δ σ 0 χ −µ− δ −χ .
0 ν ǫ− σ −ν 0 µ σ − ǫ −µ
0 σ − ǫ− χ ν + δ χ+ ǫ− σ 0 ǫ −ν − δ −ǫ .
0 −µ− δ − ν −ǫ− χ µ+ δ + ν 0 δ ǫ+ χ −δ

0 0 0 0 0 0 0 0
. −σ µ σ − ǫ− χ δ χ ν ǫ −µ− δ − ν

−µ− δ ǫ− σ −δ − ν −χ− ǫ µ+ δ σ − ǫ δ + ν ǫ+ χ
. σ −µ −σ + ǫ+ χ −δ −χ −ν −ǫ µ+ δ + ν

0 0 0 0 0 0 0 0
. χ ν ǫ −µ− δ − ν −σ µ σ − ǫ− χ δ

µ+ δ σ − ǫ δ + ν ǫ+ χ −µ− δ ǫ− σ −δ − ν −χ− ǫ
. −χ −ν −ǫ µ+ δ + ν σ −µ −σ + ǫ+ χ −δ

0 −α −β α 0 −γ β γ
. γ 0 −α −β α 0 −γ β

β γ 0 −α −β α 0 −γ
. −γ β γ 0 −α −β α 0

0 −γ β γ 0 −α −β α
. α 0 −γ β γ 0 −α −β

−β α 0 −γ β γ 0 −α
−α −β α 0 −γ β γ 0
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The commutation relations among the generators are given in the following table. δV =
αA+ βB + γC + δD + µM + νN + σS + ǫE + χQ.

[S,M ] = −2A [S,E] = −2B [S,Q] = −2B [S,D] = −2A+ 2G
[S,N ] = −2A [S,A] = −M + 2D −N [S,B] = S + E +Q [S,G] = −M −N

[M,E] = −2A+ 2G [M,Q] = −2A [M,D] = 2B [M,N ] = 2B
[M,A] = S −Q [M,B] = −M +D +N [M,G] = S + 2E −Q [E,Q] = 2B
[E,D] = 2A− 2G [E,N ] = 0 [E,A] = −M −D +N [E,B] = −2S − 2Q

[E,G] = M +D −N [Q,D] = 0 [Q,N ] = 2G [Q,A] = −D + 2N
[Q,B] = −S + E −Q [Q,G] = 2M −D [D,N ] = 2B [D,A] = S − E +Q
[D,B] = −2M + 2N [D,G] = −S + E −Q [N,A] = 2S + E [N,B] = −M −D +N
[N,G] = E − 2Q [A,B] = 0 [A,G] = 0 [B,G] = 0
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