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Abstract

Continuous transformations of dihedral groups of >= 6 have a maximum of 3(p−
1)/2 independent parameters if p is odd, and 3(p− 2)/2 if p is even.

The transformations TH of a group H which is a subgroup of G will sometimes
be a subset of the transformations TG over G, but not in general. In particular, if
G = H ⊗ Z2, TH is a subset of TG. Therefore in general, if a subgroup H of G
transforms as TGH as part of TG, TGH will not be the same as the transforms TH of H
as a stand-alone group.

Unless the original group objects are physical objects, these continuous transfor-
mations are unlikely to have physical meaning.

1 Introduction

As described in an earlier paper 1, non-abelian finite groups can sustain continuous trans-
formations in a space that mixes the group elements, which maintain the original group
structure. These transformations are of the form of n× n matrices, where n is the order of
the group. Name such a transform matrix V ; the equation governing its differential changes
is

δVi,kj−1 + δVj,i−1k = δVij,k

. The i, j, and k are the numbered group elements, such that (e.g.) kj−1 is the number of
the element given by the group product of group element k and the inverse of j.

While it is possible to solve for the generators of such a transformation for any given
group, it is good to have general solutions available. One simple example is dihedral groups.

2 Dihedral groups: 2× p

Dihedral groups of order 2p obey a2 = 0 and bp = 0 and ba = ab−1 for appropriate selections
of a and b. It is convenient to number the group elements from {0 . . . 2p−1} mapping i→ bi

1Symmetries of preon interactions modeled as a finite group. J.N. Bellinger J.Math.Phys.38:3414-
3426,1997
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for i ∈ {0 . . . p − 1} and i → abi−p for i ∈ {p . . . 2p − 1}. Name the first subset A and the
second one B. The subset A is an abelian subgroup, and we already know that the δVi,j
components are all 0 when i and j are in the abelian subgroup.

The δV array then neatly partitions into 4 sub-matrices:

δV =

(
V 1 V 2
V 3 V 4

)
(1)

δVi,kj−1 + δVj,i−1k = δVij,k

Case i j k

1 A A A
2 A A B
3 A B A
4 A B B
5 B A B
6 B A B
7 B B A
8 B B B

For Case 1, all the δVx,y have x and y in subset A, which is an abelian subgroup and for
which all the δV V 1 entries are zero.

Case δVi,kj−1 δVj,i−1k δVij,k

2 V 2 V 2 V 2
3 V 2 V 3 V 3
4 V 1 = 0 V 4 V 4
5 V 3 V 2 V 3
6 V 4 V 1 = 0 V 4
7 V 4 V 4 V 1 = 0
8 V 3 V 3 V 2

V 2 and V 3 are, of course intimately linked, and V 4 is not related to either of them.

Using the notation described above, if i and j are in A their combination ij is mod(i+j)p.
For simplicity I will denote mod(i + j)p as {i + j}. If i ∈ A, i−1 we can represent as N − i
or simply {−i} for convenience. If i ∈ B, i−1 = i as each element is its own inverse. When
i, j ∈ B (i.e. i is really mod(i)N +N ≡ {i}+ p), their combination ij is {j − i}+ p.

i ∈ j ∈ ij

A A {i+ j} ∈ A
A B {j − i}+ p ∈ B
B A {i− j}+ p ∈ B
B B {j − i} ∈ A
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2.1 V4

2.1.1 Case 7

In this case i ∈ B, j ∈ B, and k ∈ A. Since ij ∈ A, the right-hand side of this equation is
zero.

δVi,kj−1 + δVj,i−1k = δVij,k = 0

δVi,kj−1 = δVi,{j−k}+p = δV{i}+p,{j−k}+p

δVj,ik = δVj,{i+k}+p = δV{j}+p,{i+k}+p

The subscripts are hard to read, so define

δVx,y ≡ ((x, y))

and we have
(({i}+ p, {j − k}+ p)) = −(({j}+ p, {i+ k}+ p)) (2)

We already know we’re in the V 4 block, so we can omit the +p for clarity here.

(({i}, {j − k})) = −(({j}, {i+ k}))

We can use this more easily if we define {J} ≡ {j − k}, which gives use

(({i}, {J})) = −(({J + k}, {i+ k}))∀k (3)

Wrap-around diagonals have the same value. For example, if {i} = 2 and {J} = 1 has
(({1}, {1})) = −x, then in V 4 we have:

0 x 0 0 . . . 0 -x
-x 0 x 0 . . . 0 0
0 -x 0 x . . . 0 0
0 0 -x 0 . . . 0 0

. . .
0 0 0 0 . . . 0 x
x 0 0 0 . . . -x 0

(4)

There are p partial diagonals, which are paired. The central diagonal is zero. If p is
odd there can be (p − 1)/2 of these (bp = 0) set of diagonals. If p is even, then we can use
Equation 3 and set i = 0, J = p/2, and use k = p/2 to find ((0, p/2)) = −((0, p/2)). Clearly
all elements in this partial diagonal are also 0. So if p is even the number of paired diagonals
is (p− 2)/2 and if p is odd there are (p− 1)/2.
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2.1.2 Case 6

In this case i ∈ B, j ∈ A, and k ∈ B. Since j and i−1k are both in A, the second term is 0
and the fundamental equation is now:

δVi,kj−1 + 0 = δVij,k

Once again this involves elements of V 4

(({i}+ p, {k − j}+ p)) = (({i+ j}+ p, {k}+ p))

If we drop the p for clarity, and define {K} = {k − j} then we have

(({i}, {K})) = (({i+ j}, {K + j}))∀j

This simply tells us that all elements in a wrap-around diagonal are the same in V 4,
which we knew already from Case 7.

2.1.3 Case 4

In this case i ∈ A, j ∈ B, and k ∈ B. Since both i and kj−1 are in A, the first term is 0 and
the fundamental equation is now:

0 + δVj,i−1k = δVij,k

This also involves elements of V 4:

(({j}+ p, {i+ k}+ p)) = (({j − i}+ p, {k}+ p))

If we drop the p for clarity, and define {J} = {j − i}, then we have

(({J + i}, {k + i})) = (({J}, {k}))

This simple tells us that all elements in a wrap-around diagonal are the same in V 4,
which we knew already from Case 7 and Case 6. Simple parameter substitution shows these
3 sets of equations are equivalent.

2.1.4 Calculations within V4

Since Cases 4, 6, and 7 exhaust the equations that involve elements of V 4, there are no further
restrictions on the number of independent solutions and we have (p − 1)/2 (or (p − 2)/2 if
p is even) generators which can be represented by the following block array, where 0 is an
p× p array of 0 and V 4 is a wrap-around diagonal array like that in Eq 4. For purposes of
categorization we can without loss of generality set x=1. The wrap-arounds start in positions
(({1}, {2})) (for +1) and (({2}, {1})) (for -1) for the first array, (({1}, {3})) (for +1) and
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(({3}, {1})) (for -1) for the second array, and so on up to (({1}, {p+ 1)/2})) (for +1) for the
(p− 1)/2)’th array. Give the one with (({1}, {m+ 1})) = 1 the name Gm.

This is easier to deal with if we define an array

P =


Pi,j = 1 for j = i+ 1

Pi,j = 1 for i = p, j = 1

Pi,j = 0 otherwise

(5)

We can define our (p− 1)/2) generator representations as

Gm = Pm − P p−m for m ∈ {1 . . . (p− 1)/2} (6)

Obviously G0 = 0, and if p is even Gp/2 = 0 too. From this construction it is easy to see
that these generator representations always commute.

GmGn = GnGm (7)

It further follows (recalling that P p = I), and considering 3m as being modulo p, that

Gm
3 = P 3m − 3P 2mP p−m + 3PmP 2p−2m − P 3p−3m (8)

= (P 3m − P p−3m)− 3(Pm − P p−m) (9)

= G3m − 3Gm (10)

If p is odd, or if p is even and m 6= p/2, 3m will always refer to a different generator
representation than m. Note that if p > 3m > (p− 1)/2 then G3m = −Gp−3m

GmGnGl = Gm+n+l +Gm−n−l +Gl−m−n +Gn−m−l (11)

When p = 3 or p = 4, there is only one generator in the representation of V 4. When
p = 5 there are two, and it is straightforward to design linear combinations L1 and L2 such
that L1

3 = αL1 and L2
3 = βL2. For L1 = c1G1 + c2G2, the ratio c1/c2 is one of (1±

√
(5))/2

or (−2±
√

(5)).

For calculations define

Hm = Pm + P p−m (12)

H0 = 2I, Hm = H−m. Even products of G’s involve only the H’s, and odd products only
involve the G’s.

2.2 V2, V3

From δVi,j = −δVj−1,i−1 we know that these two sub-matrices are not independent. Cases
2, 3, and 5, when re-written to reflect only elements in V 2, are equivalent sets of equations.
For simplicity of notation if k′ > p I use the k ≡ k′ − p, element k′ = abk below.

δVbi,abk−j + δVbj ,abk+i = δVbi+j ,abk
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δVbi,abj−k − δVbi−k,abj = −δVb−k,abj−i

−δVbj−k,abi + δVbj ,abk+i = −δVb−k,abi+j

Keeping only the exponents of b and taking the presence of a in the second place as given,
I write the first equation (equivalent to the other two) as

〈i, k − j〉+ 〈j, k + i〉 = 〈i+ j, k〉 (13)

Equation Case 8 is not equivalent to the other three (2, 3, and 5). When I put it in a
form that references only V 2 I get

〈k − j, i〉+ 〈i− k, j〉+ 〈j − i, k〉 = 0 (14)

Here i, j, and k range from 0 to p− 1

If you set j = i in Equation 14 you can easily see that

〈x, y〉 = −〈−x, y〉 (15)

If p is odd the above are all distinct except where x = 0, and we know already that
〈0, y〉 = 0. If p is even, then x = p/2 = −x and 〈p/2, y〉 = −〈p/2, y〉 and these are also
clearly 0 for all y: a second row of 0.

It isn’t hard to show that Equation 14 is a consequence of Equation 15 and Equation 13,
so we use the latter two as a simpler pair.

It is convenient to use Equation 13 in a slightly different form, defining H = i+ j to get

〈H, k〉 = 〈i, k −H + i〉+ 〈H − i, k + 1〉 (16)

Let H = p− 1. From Equation 15 if we know 〈p− 1, k〉 we know 〈1, k〉. Since the sums
of each row or column of the differential matrix is 0, we also have

〈p− 1, 0〉 =

p−1∑
j=1

〈p− 1, j〉 (17)

and using Equation 15 we find

〈p− 1, k〉 = 〈i, k + i+ 1〉 − 〈i+ 1, k + 1〉 (18)

Let I = 1.

〈p− 1, k〉 = 〈1, k + 2〉 − 〈2, k + 1〉 = −〈p− 1, k + 2〉 − 〈2, k + 1〉 (19)

We can rewrite this as

〈2, k + 1〉 = −〈p− 1, k〉+ 〈p− 1, k + 2〉 (20)
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Since this is true for all k, we now have each element of the row 〈2, x〉 In terms of the
p−1 remaining elements of the row 〈p−1, x〉. This automatically gives us the row 〈p−2, x〉.

Let I = 2. The same sort of manipulation shows us

〈p− 1, k〉 = 〈2, k + 3〉 − 〈3, k + 2〉 (21)

Since we know the 〈2, x〉 in terms of the top row, we can solve for 〈3, x〉 also, and plainly
iterate through each of the rows in turn.

All rows are expressible in terms of the elements of the top row, and one of those elements
in the top row in turn is expressible in terms of the rest of the row, so there are a maximum
of p − 1 independent variables if p is odd, and therefore a maximum of p − 1 generators
involving the off-diagonal arrays.

Explicit calculations on examples suggest that p−1 is also the minimum, which, combined
with the generators from the diagonal matrix, says there are 3(p − 1)/2 generators for the
transformations of a finite group of order 2p.

We can produce neater equations. Let H = p− 2 and i = p− 1.

〈p− 2, k〉 = 〈p− 1, k + 1〉+ 〈p− 1, k − 1〉 (22)

Then, successively, let H = p− 3 and i = p− 2, then H = p− 4 and i = p− 3 to get

〈p− 3, k〉 = 〈p− 1, k + 2〉+ 〈p− 1, k〉+ 〈p− 1, k − 2〉 (23)

〈p− 4, k〉 = 〈p− 1, k + 3〉+ 〈p− 1, k + 1〉+ 〈p− 1, k − 1〉+ 〈p− 1, k − 3〉 (24)

and so on.

〈p−X, k〉 =

X−1,(2)∑
a=1−X

〈p− 1, k + a〉 (25)

This makes it convenient to deal with the case where p is even. Recall that

〈p/2, k〉 = 0

. In Equation 25 set X = p/2. This gives us

〈p− p/2, k〉 = 〈p/2, k〉 = 0 =

p/2−1,(2)∑
a=1−p/2

〈p− 1, k + a〉 (26)

The right hand side consists of (p − 2)/2 + 1 = p/2 terms, or half of the 〈p − 1, k〉 row. If
k is odd these are all the odd numbered elements, and if k is even all the even numbered
elements of the row. This gives 2 equations: all even numbered elements of the p − 1 row
sum to zero, and so do all the odd numbered elements. Adding both says that the sum of
all elements in the row is zero, which we already knew. Therefore there are 2 independent
constraints on the values of the elements of the p − 1 row (from which all other rows can
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be determined), so there are p − 2 independent parameters in the transformation over the
off-diagonal sub-arrays.

Combining the diagonal sub-matrix results and the off-diagonal sub-matrix results tells
us that for a dihedral group of order p, there are a maximum of 3(p − 1)/2 independent
parameters in the transformation if p is odd, and 3(p− 2)/2 if p is even.

In all cases I have solved the maximum number of parameters is the total number of
parameters.

3 H a subgroup of G

We use the differential continuous transformation equation

δVi,kj−1 + δVj,i−1k = δVij,k (27)

For simplicity of notation, take the δV as given and represent the above as

(i, kj−1) + (j, i−1k) = (ij, k) (28)

Let TH be the continuous transformations (defined in 2) over H. Let H be a subgroup of G.

Is TH ≤ TG?

3.1 H is a normal subgroup of G

3.1.1 G = H ⊗ Z2

For this case, TH ≤ TG, as I show below.

The cosets of G are H and Q, where Q = Hb and b2 = 0, with 0 representing the identity.
Retain the ordering, so that each element hb of Q is hb where h ∈ H. Since b commutes
with everything I will place it at the right.

The i, j, and k will be in either H or Q, giving us 8 sets of equations. The transformation
array partitions into 4 blocks. A and D are on the diagonal, B and C off-diagonal.

H Q
H A B
Q C D

2Journal of Mathematical Physics 38:3414-3426, 1997
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The list of equations is

i j k Generic Block Detail
1 H H H (H,H) + (H,H) = (H,H) A+ A ∈ A (i, kj−1) + (j, i−1k) = (ij, k)
2 H H Q (H,Q) + (H,Q) = (H,Q) B +B ∈ B (i, kj−1b) + (j, i−1kb) = (ij, kb)
3 H Q H (H,Q) + (Q,H) = (Q,H) B + C ∈ C (i, kj−1b) + (jb, i−1k) = (ijb, k)
4 H Q Q (H,H) + (Q,Q) = (Q,Q) A+D ∈ D (i, kj−1) + (jb, i−1kb) = (ijb, kb)
5 Q H H (Q,H) + (H,Q) = (Q,H) C +B ∈ C (ib, kj−1) + (j, i−1kb) = (ijb, k)
6 Q H Q (Q,Q) + (H,H) = (Q,Q) D + A ∈ D (ib, kj−1b) + (j, i−1k) = (ijb, kb)
7 Q Q H (Q,Q) + (Q,Q) = (H,H) D +D ∈ A (ib, kj−1b) + (jb, i−1kb) = (ij, k)
8 Q Q Q (Q,H) + (Q,H) = (H,Q) C + C ∈ B (ib, kj−1) + (jb, i−1k) = (ij, kb)

Notice that equation sets 1, 4, 6, and 7 include only A and D, and the rest only include
B and C. Equation set 1, if in isolation, would reproduce TH . Since 2, 3, 5, and 8 do not
involve these elements, it suffices to show that equations 1, 4, 6, and 7 will in fact continue
to reproduce TH .

Add up equation sets 4, 6, and 7. This gives

(i, kj−1) + (j, i−1k) + 2(jb, i−1kb) + 2(ib, kj−1b) = (ij, k) + 2(ijb, kb) (29)

which of course simplifies to

(jb, i−1kb) + (ib, kj−1b) = (ijb, kb) (30)

Add equation sets 4 and 6. This gives

(i, kj−1) + (jb, i−1kb) + (ib, kj−1b) + (j, i−1k) = 2(ijb, kb) (31)

which we combine with the above equation to find that

(i, kj−1) + (j, i−1k) = (ijb, kb) (32)

Solving for the rest of them is trivial, and we see that

(ijb, kb) = (ij, k) (ib, kj−1b) = (i, kj−1) (jb, i−1kb) = (j, i−1k) (33)

In this case we see that the transformations within D exactly mirror those within A,
which means that the same TH , extended to reach the elements in Q, is part of the set of
transformations over H ⊗ Z2.

For the sake of completeness, recalling that (x, y) = −(y−1, x−1), we can show that the
off-diagonal blocks are governed by

−(jk−1b, i−1) = (i, kj−1b) = (ib, kj−1) = −(jk−1, i−1b) (34)

−(k−1b, j−1i−1) = (ij, kb) = (ijb, k) = −(k−1, j−1i−1b) (35)

−(k−1ib, j−1) = (j, i−1kb) = (jb, i−1k) = −(k−1i, j−1b) (36)
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3.1.2 H ⊗ g

Order the elements of g in some arbitrary order that has the identity as 0. Call the q’th
element gq.

The group G partitions into cosets which we can label as Cq = Hgq.

Recall the fundamental equation:

(i, kj−1) + (j, i−1k) = (ij, k) (37)

If the {i, j, k} ∈ H, we have the transformation TH over H, provided it is not constrained
by any other terms.

In the following cases, the {i, j, k} ∈ H is already accounted for, and q 6= 0.

If the first term involves elements of (H,H), then we have i ∈ H, and if k ∈ Cq, then
we must have j ∈ Cq. This means that the second and third terms must be in (Cq, Cq) and
(Cq, Cq) respectively. (H,H) + (Cq, Cq) ∈ (Cq, Cq).

If the second term involves elements of (H,H), then we have j ∈ H, and if k ∈ Cq, then
we must have i ∈ Cq. This means that the first and third terms must be in (Cq, Cq) and
(Cq, Cq) respectively. (Cq, Cq) + (H,H) ∈ (Cq, Cq).

If the third term involves elements of (H,H), then we have k ∈ H, and if j ∈ Cq, then
we must have i ∈ C−1q . This means that the first and second terms must be in (C−1q , C−1q )
and (C−1q , C−1q ) respectively. (C−1q , C−1q ) + (C−1q , C−1q ) ∈ (H,H). Recalling that (i, j) =
−(j−1, i−1), we can have all these equations involving (Cq, Cq), which simplifies the argument
below.

We have 1 + 3 × (n − 1) equation sets: One that mixes only (H,H) terms, and (n − 1)
sets of 3 equation sets mixing only (H,H) and (Cq, Cq) terms for a given q.

However, though each of the of the (n−1) sets of equation sets is identical in form to each
other, they are not as simple as the Z2 example above. Since q2 6= 0 in general, though the
first two equation sets are the same, the last, in order to involve only Cq elements, reverses
the order.

(i, kj−1) + (jq, i−1kq) = (ijq, kq) (38)

(iq, kj−1q) + (j, i−1k) = (ijq, kq) (39)

(iq, kj−1q) + (jq−1, i−1kq−1) = (ij, k)

(iq, kj−1q)− (k−1iq, j−1q) = (ij, k) (40)

Combining all three reduces to the following, but without more information we cannot
solve for the (Cq, Cq) terms in terms of the (H,H) ones, and in general the interference
between terms will mean that the TH will no longer be a subset of TG.

2(iq, kj−1q) + (jq, i−1kq)− (k−1iq, j−1q) = 2(ijq, kq) (41)

3.1.3 Normal subgroup

The mixing is even more thorough if H is a generic normal subgroup of G. The Cq we can
still define similarly, with {q} being one element of each coset, but since in general iq 6= qi,
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the sets of equation sets are more complicated:

(i, kj−1) + (jq, i−1kq) = (ijq, kq) (42)

(iq, kqj−1) + (j, i−1k) = (iqj, kq) (43)

(iq, kqj−1) + (jq−1, q−1i−1k) = (iqjq−1, k)

(iq, kqj−1)− (k−1iq, qj−1) = (iqjq−1, k) (44)

Clearly the equation sets for simple groups will be even further entangled, and TH will
not be a subset of TG except by accident.

3.1.4 Consequence

Taking this in reverse, we see that the transformations of H when it is a subset of G will not
in general be the same as the transformations of H taken standalone, because of the extra
constraints due to its embedding in G.

This means that you cannot simply solve a larger group and automatically retrieve the
transformations of its subgroups as they would be in isolation: each group needs to be
studied on its own.

4 Physics applications

Can the symmetries of this type have physics applications?

If the group in question is a representation of physical entities whose interactions are
faithfully represented by the group’s Cayley table, then yes, it could. The original JMP
paper studied the possibility that preon interactions could be modeled this way.

If, on the other hand, the group is the set of operators on some physical system, then
the answer is no. This is because the set of operators which preserves the symmetries of
that system will not include the additions of two operators. This creates a new operator
which is not in the original set of symmetry-preserving operators. For example, in the usual
representation, group element interactions are matrix multiplications, but when you treat
them as basis vectors for a field, that introduces matrix addition, which creates matrices
which don’t have the same properties as the original ones.

You are invited to verify this yourself. An equilateral triangle can be operated on by 3 flips
{F1, F2, F3} and 3 rotations {R0, R120, R240}. A set of 3 2-points representing the triangle is
operated on by 2x2 matrices representing the operators. One infinitesimal transformation
over F1 turns out to be F1 + εF2− εF3. You quickly see that the result doesn’t preserve any
of the points, or transform them into each other.

In addition, there are two distinct entities which can represent null. The identity element,
modulo some scaling, is one candidate, but so is the true zero, in which all coefficients of the
group elements are zero. Notice that for two elements a and b such that a2 = b2 and ab = ba,
the expanded product of a+ b and a− b is true zero, even though neither of the terms is.
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5 Examples

As described in the earlier paper, the continuous transformations over the dihedral group of
order 6 (the smallest non-abelian finite group) are isometric to SU(2). The transformations
over the alternating group A4 (a 12-element group) are isometric to S(3).
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