Muon Monte Carlo: a new high-precision tool for muon propagation through matter

Dmitry Chirkin^{1,2}, Wolfgang Rhode² ¹University of California at Berkeley, USA ²Bergische Universität Gesamthochschule Wuppertal, Germany

Derivation of tracking formulae Continuous part of the energy losses: $-\frac{dE}{dx} = f(E)$ X_i dx X_f The stochastic part: $dP(E(x_i)) = \sigma(E(x_i))dx$. Probability to suffer a catastrophic loss on dx at x_f is $(1 - dP(E(x_i))) \cdot ... \cdot (1 - dP(E(x_f))) \cdot dP(E(x_f))$

Fits to total energy loss and average range

$$= \exp(-dP(E(x_i))) \cdot \dots \cdot \exp(-dP(E(x_f))) \cdot dP(E(x_f))$$
$$= \exp\left(-\int_{E_i}^{E_f} dP(E(x))\right) \cdot dP(E(x_f))$$
$$= d_f\left(-\exp(-\int_{E_i}^{E_f} \frac{\sigma(E)}{-f(E)} \cdot dE)\right) = d(-\xi), \quad \xi \in (0; 1]$$

The above equation can be solved for E_f :

$$\int_{E_i}^{E_f} \frac{\sigma(E)}{-f(E)} \cdot dE = -\log(\xi) \quad \text{ (energy integral),}$$

and then the corresponding displacement is found:

$$x_f = x_i - \int_{E_i}^{E_f} rac{dE}{f(E)}$$
 (tracking integral).

Continuous randomization

choose dx so small that $p_0 = \int_{e_0}^{e_{cut}} p(e; E) de \cdot dx \ll 1$ $\langle e \rangle = \int_{e_0}^{e_{cut}} e \cdot p(e; E) de \cdot dx \quad \langle e^2 \rangle = \int_{e_0}^{e_{cut}} e^2 \cdot p(e; E) de \cdot dx$ $\langle (\Delta e)^2 \rangle = \langle e^2 \rangle - \langle e \rangle^2$

For small e_{cut} , $p(e; E) \simeq p(e; E_i) \rightarrow \text{distributions } p(e; E)$ are the same \rightarrow central limit theorem can be applied

 $< (\Lambda(\Lambda E))^2 > = \sum (<e_m^2 > - <e_m >^2) =$

$$= \sum_{n} \left[\left(\int_{e_0}^{e_{cut}} e_n^2 \cdot p(e_n; E_i) \, de_n \right) dx_n - \left(\int_{e_0}^{e_{cut}} e_n \cdot p(e_n; E_i) \, de_n \right)^2 dx_n^2 \right]$$

$$= \int_{x_i}^{x_f} dx \cdot \left[\left(\int_{e_0}^{e_{cut}} e^2 \cdot p(e; E(x)) \, de \right) - \left(\int_{e_0}^{e_{cut}} e \cdot p(e; E(x)) \, de \right)^2 dx \right]$$

Here E_i was replaced with average expectation value of energy at x, E(x). As $dx \to 0$, the second term disappears. The lower limit of the integral over e can be replaced with zero, since all of the cross sections diverge slower than $1/e^3$. Then,

$$< (\Delta(\Delta E))^2 > \simeq \int_{x_i}^{x_f} \frac{dE}{-f(E)} \cdot \left(\int_0^{e_{cut}} e^2 \cdot p(e; E) \ de \right)$$

 10^6 muons with energy 9 TeV propagated through 10 km of water: regular (dashed) vs. "cont" (dotted)

	Survival probabilities				
v_{cut}	"cont"	1 TeV 3 km	9 TeV 10 km	10^{6} TeV 40 km	
0.2	no	0	0	0.153	
0.2	yes	0.010	0.057	0.177	
0.05	no	0	0.035	0.143	
0.05	yes	0.045	0.039	0.139	
0.01	no	0.030	0.037	0.142	
0.01	yes	0.034	0.037	0.139	
10^{-3}	no	0.034	0.037	0.140	
10^{-3}	yes	0.034	0.037	0.135	

in Fréjus rock: solid line designates the value of the range evaluated with the second table (continuous and stochastic losses) and the broken line shows the range evaluated with the first table (continuous losses only).

Parametrization errors:

Photonuclear losses, LPM effect and Molière scattering

