particle acceleration in reconnection regions
the case of cosmic ray excess from the heliotail

Paolo Desiati1,2 & Alexander Lazarian2

1 IceCube Research Center
2 Department of Astronomy

University of Wisconsin - Madison

2011 EGU General Assembly, Vienna (Austria)
April 6th, 2011
cosmic rays

- CR below the knee ($\sim 3 \times 10^{15}$ eV) believed to be galactic

- CR below $\sim 10^{18}$ eV believed to be predominantly galactic (transition to extra-galactic @ $\sim 10^{18}-10^{19}$ eV)

- galactic CR believed to be accelerated in expanding shock waves initiated by supernova explosions

- anisotropy in arrival direction expected from discrete sources distribution & propagation
low energy cosmic ray anisotropy in arrival direction

Particle acceleration in reconnection regions - Paolo Desiati
medium / small scale anisotropy

- global amplitude of large scale anisotropy increases with energy up to ~ 1-10 TeV and decreases above it

- origin of anisotropy is unknown

- large scale anisotropy shows smaller angular features, some of which highly significant

- small angular features might reveal properties of the boundary region between solar wind and interstellar wind

- isolate small scale features

4 Particle acceleration in reconnection regions - Paolo Desiati

[Image of energy levels: 0.7 TeV, 1.5 TeV, 3.9 TeV, 4 TeV, 6.2 TeV, 12 TeV, 50 TeV]
medium / small scale anisotropy

Milagro

$2.2 \cdot 10^{11}$ events
median CR energy $\sim 1 \text{ TeV} = 10^{12} \text{ eV}$
average angular resolution $< 1^\circ$

2hr time window
10° smoothing

- filter all angular features $> 30^\circ$
- technique used in gamma ray searches
medium / small scale anisotropy

Milagro

2.2 \cdot 10^{11} \text{ events}

median CR energy \sim 1 \text{ TeV} = 10^{12} \text{ eV}

average angular resolution < 1^\circ

2hr time window

10^\circ \text{ smoothing}

- filter all angular features > 30^\circ

- technique used in gamma ray searches

\[\frac{dN}{dE} \propto E^\gamma e^{-\frac{E}{E_c}} \]
origin of small scale anisotropy: astrophysics?

- localized excess of cosmic rays from nearby (~150 pc ~ 3×10^7 AU) recent (~ 350 kyr) supernova that gave birth to Geminga Pulsar

- fine tuning of propagation through interstellar medium

- incidentally requires magnetic connection to the faraway source

- small scale features likely from local processes

origin of “tail-in anisotropy”

- broad tail-in excess of **sub-TeV** cosmic rays attributed to heliotail
- localized excess of **multi-TeV** cosmic rays from the direction of the heliotail
- medium/small scale modulation to be connected to **nearby** perturbations
- first-order Fermi acceleration in magnetic reconnection regions in the heliotail

magnetic reconnection @ heliotail

- magnetic polarity reversals due to the 11-year solar cycles compressed by the solar wind in the magneto-tail

“more realistic” numerical simulation of the turbulent heliosphere and heliotail
magnetic reconnection @ heliotail

- magnetic polarity reversals due to the 11-year solar cycles compressed by the solar wind in the magneto-tail

- ubiquitous turbulence makes reconnection fast and not affected by ohmic dissipation

Sweet, IAU Symposium 6, Electromagnetic Phenomena in Cosmical Physics, 123, 1959.
Parker, J. Geophys. Rev., 62, 509, 1957

Particle acceleration in reconnection regions - Paolo Desiati
stochastic magnetic reconnection

- verification of Lazarian & Vishniac 1999 with numerical calculations
- reconnection speed does not depend on resistivity
- reconnection speed increases with turbulence injection power
- reconnection speed \sim local turbulent velocity
acceleration in reconnection regions

- first order Fermi acceleration from volume-filling magnetic reconnection

- magnetic mirror @ reconnection as site of acceleration

\[N(E) dE \sim E^{-5/2} dE \]

- magnetic tubes contraction leads to increase of particle energy as long as they are within the contracting magnetic loop

\[E_{\text{max}} \approx 10^{13} \text{ eV} \cdot \left(\frac{B}{1 \mu G} \right) \cdot \left(\frac{L_{\text{zone}}}{134 \text{ AU}} \right) \]

application to pulsars, microquasars, solar flares acceleration

de Gouveia Dal Pino & Lazarian, 2000, 2003, 2005
Lazarian, 2005
acceleration in weakly stochastic reconnection regions

- test particle verification of Lazarian & Vishniac 1999 with numerical calculations

- magnetic energy transferred into energy of contracting loops

- fast reconnection induces efficient acceleration of cosmic rays

- complexity of acceleration: contracting loops & current sheets; 1st order Fermi & drift acceleration

more studies: Kowal et al., arXiv:1103.2984
acceleration in reconnection regions

\[N(E)dE \sim E^{-5/2}dE \]

- harder spectrum if **back reaction** of accelerated particle

\[E_{\text{max}} \approx 10^{13} \text{ eV} \cdot \left(\frac{B}{1 \, \mu G} \right) \cdot \left(\frac{L_{\text{zone}}}{134 \, AU} \right) \]

- solar wind \(\approx 100 \text{ km/sec} \)

- \(E_{\text{max}}(1 \, \mu G) \approx 20 \text{ TeV} \)

\[\implies \text{unlikely to expect energies} \geq 10 \text{ TeV} \]
application on anomalous cosmic rays

- magnetic field reversals from Sun’s rotation compress at the heliopause

- reconnection and acceleration induced in the heliosheath closer to the heliopause

- Voyager did not observe ACR passed the termination shock

- other models available as well

conclusions

• broad tail-in excess of sub-TeV cosmic rays and localized excess of multi-TeV cosmic rays from the direction of the heliotail could have a common origin

• 1st order Fermi acceleration in magnetic reconnection regions in the heliotail

• HE cosmic rays excess related to reconnection site - LE cosmic rays smeared by scattering

• no need to tune interstellar medium properties

› on-going numerical calculations to verify whether magnetic reconnection regions in the heliotail may be site of efficient acceleration

› acceleration mechanisms in stochastic reconnection regions might explain the puzzling localized excess region of multi-TeV cosmic rays
back up slides
sub-TeV cosmic ray tail-in excess by some unknown asymmetry caused by the heliotail

solar magnetic field reversal should affect galactic anisotropy

origin of excess is “heliospheric”
anisotropy vs energy: probing different causes

Amenomori et al., astro-ph/0505114

Particle acceleration in reconnection regions - Paolo Desiati