Cosmic Rays

Patrick Berghaus

IceCube Neutrino Detector

South Pole

BUDWAY

IceCube Preliminary Design Document October 11, 2001/ Revision: 1.24 The IceCube Collaboration

3 Science Motivation for Kilometer-Scale Detectors

The construction of neutrino telescopes is overwhelmingly motivated by their discovery potential in astronomy, astrophysics, cosmology and particle physics. To maximize this potential, one must design an instrument with the largest possible effective telescope area to overcome the small neutrino cross section with matter, and the best possible angular and energy resolution to address the wide diversity of possible signals. A well-designed neutrino telescope can

- search for high energy neutrinos from transient sources like Gamma Ray Bursts (GRB) or Supernova bursts;
- search for steady and variable sources of high energy neutrinos, e.g. Active Galactic Nuclei (AGN) or Supernova Remnants (SNR);

• search for the source(s) of the cosmic-rays;

Direct Observation: Example PAMELA*

*Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

10

Indirect Observation: Example IceTop

arXiv: 0711.0353

Primary Energy:
$$E_{prim} = f(S_{125}, \theta_{zen})$$

"Double-Logarithmic Parabola": Simulation-derived empirical description

Heavy Primary Nucleus

Proton Primary

Early fragmentation in upper atmosphere

Indirect Observation: Elemental Composition

"Punches through" to denser atmosphere

Heavy Primary Nucleus

Early fragmentation in upper atmosphere

Proton Primary

"Punches through" to denser atmosphere

Shower Maximum: Composition

20

CR Primary Composition with Shower Maximum Measurement

Muonic vs. Electromagnetic

Dense air: short mean free path, **more reinteractions** *b*, fewer meson decays

Measurements are not always consistent!

"Proton" Satellites (1-3,4) Launched between 1965 and 1968 Proton 4: Most Massive Scientific Satellite Ever (17t)

Two, Three, Many Populations?

Table 2. Parameters for three classes of sources. Class I: SN into ISM; class II: SN in the <u>Superbubble</u>, class III: Novae.

Class	α	$R_{max}[GV]$	γ	γ_k
Ι	2.3	5×10^4	2.63	8
II	2.1	4×10^6	2.43	4.5
III	2.57	2×10^2	2.9	4.5

Proposal by Zatsepin and Sokolskaya: Supernovae inside and outside of "Local Superbubble" (Caused by Supernova about 10 My ago)

CR Measurement Gaps

CR Spectrum Features

Primary Cosmic Radiation and Extensive Air Showers.

B. Peters

Institute for Theoretical Physics, University of Copenhagen - Copenhagen

(ricevuto il 19 Agosto 1961)

Irreg-

ularities which so far have found no adequate plausible explanation have been reported by various investigators at a shower size corresponding to a primary energy of about 10^{15} eV. Each of these observations seems to support the hypothesis that a rather sharp rigidity cut-off occurs in the source which supplies most cosmic ray particles below this energy.

Rigidity: E/Z

Resistance to deflection by magnetic field

All considered models with a (rigidity-dependent) knee are motivated by the fact that both acceleration and propagation in models involving collisionless diffusion in magnetized plasmas lead to the expectation of a rigidity-dependent cutoff for each individual component with a particle charge Z, $E_{cut,Z} \propto Z$ [32–36].

Example: "Poly-gonato" Model CR-Knee

Flux $d\Phi/dE_0 \cdot E_0^{2.5}$ [m⁻² sr⁻¹ s⁻¹ GeV^{1.5}] b) $\Delta \gamma$ 3-9 **KASCADE** Composition 10-24 10 ³ 28-92 Measurement General picture more or less confirmed 10⁶ 10⁵ 10⁸ 10⁷ 10⁹ Energy E₀ [GeV] 10^{4} 10^{4} $dN/dE \cdot E^{2.5} \quad [m^{-2}s^{-1}sr^{-1}GeV^{1.5}]$ $[m^{-2}s^{-1}sr^{-1}GeV^{1.5}]$ SIBYLL 2.1 SIBYLL 2.1 10^{3} 10 10^{2} 10^{2} $dN/dE \cdot E^{2.5}$ proton 10 silicon ★ 10🗖 helium 🔺 carbon 🔻 iron 10^{6} 10^{7} 10^{6} 10^{7} 10^{8} 10^{8} primary energy E [GeV] primary energy E [GeV] astro-ph/0505413

The View from Above

Experiment	χ^2/DOF	Slope	Break Point	Slope
(reference)		Below	$\log_{10}\left(\frac{E}{eV}\right)$	Above
Akeno	8.3/13	3.04 ± 0.02	17.8 ± 0.2	3.25 ± 0.12
(Nagano et al. 1992)				
Fly's Eye	13.7/18	3.04 ± 0.05	17.60 ± 0.06	3.27 ± 0.02
(Bird et al. 1993)				
HiRes/MIA	2.5/5	3.02	17.6 ± 0.2	3.23 ± 0.14
(Abu-Zayyad et al. 2001)				
Haverah Park	1.4/5			3.32 ± 0.05
(Ave et al. $2003a$)				
Yakutsk T-500	45.2/15			3.213 ± 0.012
(Egorova et al. 2004)				
HiRes	8.55/15			3.26 ± 0.02
(Abbasi et al. $2007a$)				
Global Fit	109.4/93	3.02 ± 0.01	17.52 ± 0.02	3.235 ± 0.008
(at Fly's Eye E scale)	50 			

Compilation of EHE air shower array results

Measurements Re-Scaled for Consistency

2nd Knee: **17.5 (300 PeV)** Ankle: **18.6 (4 EeV)**

Current Situation

Knee and Second Knee

KASCADE-Grande Karlsruhe, Germany

TUNKA Tunka Valley, Russia

IceTop South Pole, Antarctica

S. B. Shaulov et al. : The form of the CR energy spectrum up to 10¹⁸ eV First shown in 2001, published December 2009

New PeV Cosmic Ray Paradigm

The View from Both Sides

IceCube PRELIMINARY lceTop 3year (cosθ≥0.8, H4a, Sibyll

Kascade-Grande Sibvil 2013 GAMMA 2008 Tunka-25 + Tunka-133 2013 HiRes 2 TA 2013 Auger 2013

 10^{7}

10⁸

Primary Energy, E [GeV]

10⁹

Tibet III 2008 Kascade_Sibyll 2005

 10^{6}

 10^{6}

Experiment	χ^2/DOF	Slope	Break Point	Slope
(reference)		Below	$\log_{10}\left(\frac{E}{eV}\right)$	Above
Akeno	8.3/13	3.04 ± 0.02	17.8 ± 0.2	3.25 ± 0.12
(Nagano et al. 1992)				
Fly's Eye	13.7/18	3.04 ± 0.05	17.60 ± 0.06	3.27 ± 0.02
(Bird et al. 1993)				
HiRes/MIA	2.5/5	3.02	17.6 ± 0.2	3.23 ± 0.14
(Abu-Zayyad et al. 2001)				
Haverah Park	1.4/5			3.32 ± 0.05
(Ave et al. $2003a$)				
Yakutsk T-500	45.2/15			3.213 ± 0.012
(Egorova et al. 2004)				
HiRes	8.55/15			3.26 ± 0.02
(Abbasi et al. $2007a$)				
Global Fit	109.4/93	3.02 ± 0.01	17.52 ± 0.02	3.235 ± 0.008
(at Fly's Eye E scale)				

44

10¹⁰

H(illas) 3a Model

cutoff:

Pop. 3 (mixed): 2 EV

Original Hillas Proposal

1.4

Second Knee caused by intermediate component (single source?) **Extragalactic Flux included**

1.14

1.14

1.14

Data: arxiv:1303.3565 Models: arxiv.org:1307.3795

Gaisser Hillas 3 Population

Helium from Population 1 Iron from Pop. 1 and 2

Gaisser Stanev Tilav "Global Fit"

Peaks explained by He and Fe from same Population! But: Requires Super-Heavy Elements (A>200)

Current Situation

Ankle

Shortly after the discovery of the cosmic microwave background in 1965, it was pointed out that the spectrum of cosmic rays should steepen fairly abruptly above about 4 x 10^{19} eV

Zatsepin G T and V A Kuz'min 1966 Zh. Eksp. Teor. Fiz. Pis'ma Red. **4** 144 ⁴⁹

ဖွာ

First Observation of the Greisen-Zatsepin-Kuzmin Suppression

R. U. Abbasi,¹ T. Abu-Zayyad,¹ M. Allen,¹ J. F. Amman,² G. Archbold,¹ K. Belov,¹ J. W. Belz,¹ S. Y. Ben Zvi,³ D. R. Bergman,^{4,*} S. A. Blake,¹ O. A. Brusova,¹ G. W. Burt,¹ C. Cannon,¹ Z. Cao,¹ B. C. Connolly,³ W. Deng,¹ Y. Fedorova,¹ C. B. Finley,³ R. C. Gray,¹ W. F. Hanlon,¹ C. M. Hoffman,² M. H. Holzscheiter,² G. Hughes,⁴
P. Hüntemeyer,¹ B. F Jones,¹ C. C. H. Jui,¹ K. Kim,¹ M. A. Kirn,⁵ E. C. Loh,¹ M. M. Maestas,¹ N. Manago,⁶ L. J. Marek,² K. Martens,¹ J. A. J. Matthews,⁷ J. N. Matthews,¹ S. A. Moore,¹ A. O'Neill,³ C. A. Painter,² L. Perera,⁴ K. Reil,¹ R. Riehle,¹ M. Roberts,⁷ D. Rodriguez,¹ N. Sasaki,⁶ S. R. Schnetzer,⁴ L. M. Scott,⁴ G. Sinnis,² J. D. Smith,¹ P. Sokolsky,¹ C. Song,³ R. W. Springer,¹ B. T. Stokes,¹ S. B. Thomas,¹ J. R. Thomas,¹ G. B. Thomson,⁴ D. Tupa,² S. Westerhoff,³ L. R. Wiencke,¹ X. Zhang,³ and A. Zech⁴

Although

there is now little doubt that a suppression of the spectrum exists near the energy predicted, it is by no means certain that this is a manifestation of the GZK-effect as it might be that this energy is also close to the maximum to which sources can accelerate particles, with the highest-energy beam containing a large fraction of nuclei heavier than protons.

UHE CR Primary Composition

Auger: Mixed!

HiRes/TA: Protons!

Open Questions: Nature of Ankle GZK Cutoff vs. End of Acceleration

Open Questions (NOT complete)!

The Knee

Knee Composition and Models

KASCADE Light Elements

Before The Knee: CREAM

Nucleon spectrum probably harder than 2.7 IC59 diffuse analysis: $\gamma = 2.583 \pm 0.023$ (stat.)

