PHYSICS 244 NOTES

Lecture 6

The Schrödinger equation
A wave equation for the electron
We have postulated that the electron is described by a wavefunction ψ(x,t).  I will work with only one spatial variable x for simplicity, for the moment.  Schrödinger reasoned that, since the wave-on-a-string analogy should give discrete motions, we should be able to find an equation of motion for ψ, analogous to the usual wave equation.  The equation should have certain properties.  For example, it should be deterministic: that is, given an initial condition ψ(x,0), the equation should determine ψ(x,t) at all later times.  (This is just what the classical wave equation does for y(x,0) and y(x,t)).  But the classical wave equation is not going to work, since it leads to ω = vk.  For the Schrödinger equation, we have E = ħω, E = p2/2m, and p = ħk, so eliminating E and p, we find ω = ħ k2 /2m.  This is different from the classical wave equation.  Remember that components with different k-values travel at the speed v=∂ω/∂k= ħ k / m.  So the different components travels at different speeds and so a wavepacket will disperse.

The k2 comes from the second derivative with respect to x in the wave equation, but just one power of ω in the relation find ω=ħk2/2m means we are going to get only the first time derivative.  So we try

∂ψ/∂t = C ∂2ψ/∂x2,
and C is a constant to be determined.  The only problem is that we do not get simple cos and sin solutions.  Instead we have to take linear combinations.  But even this only works if we allow for complex coefficients.  

The solutions are 

ψ = ψ0 eikx-iωt = ψ0 [cos (kx-ωt) + i sin (kx-ωt)]

 and then we find ∂ψ/∂t = -iω ψ = C ∂2ψ/∂x2 = -Ck2 ψ, so the constant is 

C = iω/k2= iħ/2m
But the deBroglie relation then gives C = iħ/2m.  The Schrödinger equation is therefore

∂ψ/∂t = iħ/2m ∂2ψ/∂x2, though it is usually written in the form

iħ ∂ψ/∂t = - ħ2/2m ∂2ψ/∂x2.

If the motion is in three dimensions we have instead

-iħ ∂ψ/∂t = ħ2/2m (∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂z2) and the solutions are

ψ(x,y,z,t) = ψ0 exp [i(kxx + kyy + kzz) – i ωt].

What if forces act on the particle?  We notice that the left hand side of the SWE, written in second form, represents Eψ, so we interpret the term on the RHS as the kinetic energy, and add V(x,y,z) to the RHS:

-iħ ∂ψ/∂t = ħ2/2m (∂2ψ/∂x2 + ∂2ψ/∂y2 + ∂2ψ/∂z2) + V(x,y,z) ψ.

Note that what we have given are plausibility arguments for the SWE, not a derivation.  Indeed, it is really a new physical law, and so we couldn’t have hoped to actually derive it.

To repeat, ψ itself does not represent a physical quantity.  |ψ|2 does, but even then it is not one that can be measured by a single experiment.  

Normalization 
The procedure for solving F = ma is to find the force, specify the initial condition, and get x(t).  The procedure for solving the same  problem in QM is to decide what to use for V, specify the initial condition ψ(x,0), and then solve the SWE for ψ(x,t).  

Unlike F = ma, the SWE is linear in ψ, so it can be multiplied by any constant.  

If ψ’ is a solution, then ψ = C ψ’ is also a solution.  However, we can use the fact that |ψ|2 is a probability to get the constant:

we have the normalization condition

∫ dx |ψ(x,t)|2 = 1

So the normalization is a separate requirement on ψ.  It holds at all times t.
Superposition principle

This is a short section, but very important!  If ψ’ and ψ’’ are solutions, then ψ = A ψ’ + B ψ’’ are also solutions.    A and B are arbitrary except for the normalization condition.
